This article is excerpted from the Journal of Cosmetic Dermatology, 2025; 24:e70024 by Wound World.
Liang Chen1,2 | Fudi Wang3 | Xiaoyun Hu1,2 | Nihong Li1,2 | Ying Gao4 | Fengfeng Xue5 | Ling Xie1,2 | Min Xie1,2
1 Scientific Research Laboratory, Shanghai Le-Surely Biotechnology Co. Ltd, Shanghai, China |
2 SASELOMO Research Institute and Biological Laboratory, Shanghai Chuanmei Industrial Co. Ltd, Shanghai, China |
3 Evelab Insight (Singapore) Pte. Ltd, Singapore, Singapore |
4 Zhejiang Moda Biotech Co. Ltd, Hangzhou, China |
5 Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
Correspondence: Liang Chen (该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。) | Fengfeng Xue (该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。)
Received: 5 September 2024 | Revised: 25 December 2024 | Accepted: 24 January 2025
Funding: The authors received no specific funding for this work.
Keywords: antiaging | baicalin | bio-vesicle | skin physiology and cell culture | transdermal delivery
This article is excerpted from the Journal of Cosmetic Dermatology, 2025; 24:e70024 by Wound World.