1. 引言
糖尿病是一组因遗传和环境因素共同作用引起的以高血糖为特征的代谢性疾病。随着人们生活的改善,该疾病已成为世界上最常见的慢性疾病之一,在疾病的发展中会出现系列临床症状及并发症,显著降低患者的预期寿命[1]。据国际糖尿病联盟 2021 年统计,全世界在 20 岁至 70 岁人群中共有糖尿病患病人口 5.37亿,占世界总人口十分之一以上,预计到 2045 年该人口上升至 7.83 亿,其中中国糖尿病患病人口总数达1.41 亿,已成为世界上糖尿病患病人数最多的国家[2]。值得注意的是目前糖尿病具有几个明显特征[3]:以2 型糖尿病为主、经济发达地区糖尿病患病人口明显高于不发达地区且未诊断糖尿病患者比例高。糖尿病及其并发症严重影响人们的健康,成为世界卫生体系的沉重负担,并且当前尚没有糖尿病的特效治疗手段,因此寻求新的有效的治疗方法目前刻不容缓。近年来,氢医学蓬勃发展,氢分子因其抗炎、抗氧化、抗凋亡、调节信号通路的作用,以及其安全无毒的特征已应用于多种疾病的治疗中,并且已被证实在预防和治疗糖尿病中发挥着重要作用[4]-[16]。本文主要就氢医学的发展、氢分子的作用以及氢在糖尿病方面的基础研究和临床研究四个方面进行概述,以期为寻找更为有效的糖尿病辅助治疗方法提供新思路。
2. 氢医学概述
氢(H2)是自然界中最基础的中性分子,以单质形式的形式存在于自然界中。以往认为,氢分子是一种无色、无味且很难与生物体内的物质发生化学反应的惰性气体。直至 1975 年,Dole [17]等研究发现高压氢可治疗小鼠皮肤鳞状细胞癌,这是科学界首次将氢应用于医学的报道,但由于高压氢操作难度大、安全性低,并未引起重视。2007 年,日本学者太田成男[18]等研究发现氢具有抗氧化作用,并将该发现发表于《Science Medicine》。在这项研究中采用细胞实验的方式,发现氢可以选择性地减少羟基自由基这一种最具细胞毒性的活性氧,进而有效地保护细胞。并且在动物实验中发现吸入浓度为 2%的氢气可以通过缓解氧化应激的影响,显著改善缺血再灌注损伤引起的脑损伤。因此认为,氢可以作为一种有效的抗氧化物质迅速扩散到细胞膜上,到达细胞毒性自由基并与之反应,从而降低氧化损伤。这一发现引起医学界广泛关注,至此氢医学正式拉开序幕。并在之后十几年间被证实氢具有抗炎、抗氧化、抗凋亡以及调节信号通路的作用,并且由于其穿透性强、选择性高以及生物安全性好的特性,在急性心血管疾病[19]、非酒精性脂肪性肝炎[20]、听力障碍[21]、阿尔兹海默症[22]、代谢综合征[23]、皮肤病[24]、眼部疾病[25]、呼吸系统疾病[26]、肿瘤[27] [28] [29]以及新冠肺炎[30] [31]等多种疾病的预防和治疗中发挥着重要作用。
3. 氢分子的作用机制
3.1. 氢分子的抗炎和抗氧化作用
氢已作为一种抗氧化剂在多种疾病中应用。既往研究结果显示氢分子可显著降低 IL-1β、IL-6、IL-10、TNF-α、ICAM-1 和 CCL2 等促炎细胞因子和趋化因子[32],证明氢具有抗炎作用,这是氢分子最广为人知、最显著的生物学效应之一。氢分子可以通过选择性地减少细胞毒性氧自由基发挥其抗氧化作用。长期给予环孢菌素 A 诱导的氧化应激是慢性肾毒性的主要原因,研究证明氢可以通过降低活性氧 ROS 和脂质过氧化物 MDA 的水平,增加谷胱甘肽和抗氧化物酶 SOD 的活性改善肾功能[33]。近期的研究表明,氢还可以缓解心脏缺血再灌注损伤[34]和非酒精性脂肪肝[35]中的炎症和氧化应激。此外氢可通过增强内源性抗氧化酶的表达[36]、上调 Nrf2 抗氧化途径[37]以及调节 miRNA 的表达[38]发挥其抗炎抗氧化作用。
3.2. 氢分子的抗凋亡作用
近年来氢分子的抗凋亡作用也在多种动物疾病模型中得到了证明。氢的抗凋亡作用机制尚不明确,其作用可能与下述途径相关。首先氢可以通过升高 Bcl-2/Bax 比率(抗凋亡/促凋亡蛋白),降低 caspase-8、caspase-9 和 caspase-3 表达,改善外源性和内源性途径的原位凋亡[39];其次氢可减弱 TNF 受体 1 的作用,减少 TNF-α 导致其激活死亡结构域,进而减轻外源性细胞凋亡;氢也可以通过对线粒体的保护作用发挥其抗凋亡作用[40]。
3.3. 氢分子的调节信号通路作用
近年来,越来越多的研究一直在探索氢分子对信号转导途径的调节作用。一些已发表的研究结果显示氢分子具有调节信号通路的功能,对信号转导发挥多重作用。在这些研究中给予氢干预后发现其结果中发生改变的基因 46.5%属于参与信号通路的基因,表明氢可能通过改变丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇 3-激酶(PI3K)、蛋白激酶(Akt)等信号通路基因发挥其生物学效应[41] [42] [43] [44]。
4. 氢干预糖尿病的基础研究
目前有关氢分子对糖尿病的基础研究有很多。这些研究发现,氢在糖尿病的血糖控制及其并发症的治疗中显示出较好的干预效果。王琦金[4]等研究发现,对大鼠糖尿病模型注射饱和氢生理盐水后,可降低 MDA 水平,提高抗氧化物 SOD 和 GSH 水平,其胰岛素敏感性、血糖和血脂水平改善效果显著;并且其治疗效果优于吡格列酮。2018 年,张晓龙[5]等通过对 2 型糖尿病模型小鼠皮下注射氢气这一新型给药途径发现干预后小鼠血清葡萄糖、胰岛素、低密度脂蛋白和甘油三酯水平显著降低,高密度脂蛋白胆固醇水平显著升高,葡萄糖耐量和胰岛素敏感性均得到改善。Shirahata [6]等给与 2 型糖尿病小鼠饮用含有大量氢分子的电解还原水发现给氢干预后葡萄糖摄取信号转导通路激活,并刺激葡萄糖摄取进入 L6肌管,2 型糖尿病模型小鼠的血糖水平和糖耐量受损显著改善。
糖尿病并发症包括急性并发症、慢性并发症、感染以及低血糖症。目前已发表的关于氢干预糖尿病并发症的文献主要集中于对慢性并发症的干预,其中糖尿病微血管病变主要包括糖尿病肾病和糖尿病视网膜病变等,是糖尿病的特异性并发症,糖尿病视网膜病变是糖尿病人群失明的主要原因。张晓龙[5]等研究发现,对 2 型糖尿病肾病小鼠皮下注射氢气,其尿量、尿蛋白和 β2-微球蛋白和肾纤维化显著降低,说明氢可显著改善糖尿病肾病的相关预后。在糖尿病视网膜病变的治疗中氢可因其抗炎抗氧化作用发挥着作用。研究发现,氢可以抑制蛋白酶的活性,减少视网膜凋亡,降低血管通透性,也能显著减弱糖尿病视网膜病变引起的视网膜实质增厚[7];另一方面氢可以抑制氧化应激,增加抗氧化酶活性进而治疗糖尿病大鼠视网膜病变[8]。并且细胞实验也证明 miRNA 参与调节炎症反应,miRNA-9、miRNA-21、miRNA-146 和 miRNA-155 等与 TLR4 炎症信号通路有关,氢可以下调 miRNA-9 和miRNA-21,减少 TLR4 炎症信号通路中的 Myd88 和 IKKβ 蛋白的表达实现对糖尿病视网膜病变的治疗[9]。同时,氢对糖尿病的其他并发症,如视糖尿病神经病变[10] [11]、勃起功能障碍[12]、心功能受损[13]、骨丢失[14]等有较好的改善作用。
5. 氢医学干预糖尿病的临床研究
目前,氢干预糖尿病的临床研究较少,且干预对象主要集中于 2 型糖尿病患者。2008 年,Kajiyama [15]等招募 30 名 2 型糖尿病患者和 6 名糖尿病受损患者进行了一项随机对照试验,通过饮用富氢水的干预方式分析氢对 2 型糖尿病患者糖脂代谢的影响,这是首个公开发表的氢干预糖尿病的临床试验。结果显示为期 8 周的富氢水干预可有效降低血清氧化低密度脂蛋白和游离脂肪酸浓度,提高血浆脂联素和细胞外超氧化物歧化酶水平,并且在 6 名 IGT 患者中,4 名患者在摄入富氢水后口服葡萄糖耐量试验结果趋于正常。综上所述,富氢水在防治 2 型糖尿病和糖耐量受损方面发挥作用。2021 年,日本仙台东北大学的 Ogawa [16]等联合日本 Trim 株式会开展了一项多中心前瞻性双盲随机对照试验。这项研究招募未接受胰岛素治疗的2 型糖尿病患者 50 人,将其随机化分组为饮用电解氢水组和对照组,要求每日饮水 1500~2000 ml,共干预 3 个月。结果表明,胰岛素抵抗的变化虽有下降趋势但结果没有统计学意义。与对照组相比干预组乳酸水平显著降低,乳酸水平与空腹血糖和胰岛素抵抗水平呈正相关。在对患者进行分组后发现在 HOMA-IR >1.73 的干预组中,其血清乳酸水平及胰岛素分泌减少,胰岛素抵抗指数显著改善且未观察到电解氢水的不良反应。虽然该结果未显示富氢水对胰岛素抵抗较轻患者的治疗作用,但对胰岛素抵抗较严重的 2 型糖尿病患者作用显著。其原因可能为选择的干预对象样本量较少且病情较轻,本项研究选择的为胰岛素抵抗的患者,即所谓的糖尿病前期患者,病情较轻且指标变化幅度小,因此该研究结果中显著变化的指标主要见于胰岛素抵抗更为严重的患者。综上所述,氢对糖尿病的干预主要集中于动物实验中,人群试验尚少且与动物实验研究结果相比人群试验间结果存在争议,因此下一步需开展多中心高质量大样本的临床试验以验证氢对糖尿病的干预效果。
6. 小结
近十几年来,氢医学正在蓬勃发展并逐渐成为一个相对热门的研究领域。以往研究显示氢具有抗炎、抗氧化、抗凋亡、调节信号通路的作用,并且凭借着其扩散性强、选择性高以及生物安全性好的特征,已应用于糖尿病的相关研究中,并取得了一定的研究成果。但这些研究仅局限于对糖尿病预防和治疗效果的观察层面,尚未发现氢分子的具体作用机制。另外这些研究大多为基础研究,缺乏高质量的临床研究,因此我们需开展高质量大样本的临床研究以期对氢的生物学作用有更深入的认识,并为氢分子在糖尿病治疗方面的进一步研究提供可靠证据。
参考文献
[1] Heald, A.H., Stedman, M., Davies, M., Livingston, M., Alshames, R., Lunt, M., Rayman, G. and Gadsby, R. (2020) Estimating Life Years Lost to Diabetes: Outcomes from Analysis of National Diabetes Audit and Office of National Statistics Data. Cardiovascular Endocrinology & Metabolism, 9, 183-185.https://doi.org/10.1097/XCE.0000000000000210
[2] Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J., Mbanya,J.C., Pavkov, M.E., Ramachandaran, A., Wild, S.H., James, S., Herman, W.H., Zhang, P., Bommer, C., Kuo, S., Boyko, E.J. and Magliano, D.J. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119
[3] 中华医学会糖尿病分会. 2020 年版中国 2 型糖尿病防治指南[J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398.
[4] Wang, Q.J., Zha, X.J., Kang, Z.M., Xu, M.J., Huang, Q. and Zou, D.J. (2012) Therapeutic Effects of Hydrogen Saturated Saline on Rat Diabetic Model and Insulin Resistant Model via Reduction of Oxidative Stress. Chinese Medical Journal, 125, 1633-1637.
[5] Zhang, X., Liu, J., Jin, K., Xu, H., Wang, C., Zhang, Z., Kong, M., Zhang, Z., Wang, Q. and Wang, F. (2018) Subcutaneous Injection of Hydrogen Gas Is a Novel Effective Treatment for Type 2 Diabetes. Journal of Diabetes Investigation, 9, 83-90. https://doi.org/10.1111/jdi.12674
[6] Shirahata, S., Hamasaki, T., Haramaki, K., Nakamura, T., Abe, M., Yan, H., Kinjo, T., Nakamichi, N., Kabayama, S.and Teruya, K. (2011) Anti-Diabetes Effect of Water Containing Hydrogen Molecule and Pt Nanoparticles. BMC Proceedings, 5, Article No. P18. https://doi.org/10.1186/1753-6561-5-S8-P18
[7] Xiao, X., Cai, J., Xu, J., Wang, R., Cai, J., Liu, Y., Xu, W., Sun, X. and Li, R. (2012) Protective Effects of Hydrogen Saline on Diabetic Retinopathy in a Streptozotocin-Induced Diabetic Rat Model. Journal of Ocular Pharmacology and Therapeutics, 28, 76-82. https://doi.org/10.1089/jop.2010.0129
[8] Feng, Y., Wang, R., Xu, J., Sun, J., Xu, T., Gu, Q. and Wu, X. (2013) Hydrogen-Rich Saline Prevents Early Neurovascular Dysfunction Resulting from Inhibition of Oxidative Stress in STZ-Diabetic Rats. Current Eye Research, 38, 396-404. https://doi.org/10.3109/02713683.2012.748919
[9] 刘国丹, 韩清, 高翔春, 王进, 田苗. 分子氢对糖尿病视网膜小胶质细胞的保护作用及其机制研究[J]. 现代生物医学进展, 2016, 16(26): 5015-5018.
[10] 焦洋, 于洋, 李波, 于泳浩. 富氢液对大鼠早期糖尿病神经痛的影响[J]. 中华麻醉学杂志, 2014, 34(4): 423-426.
[11] 李德东, 李波, 孙健, 张素品, 于泳浩, 吕国义. 富氢液对糖尿病神经痛大鼠外周神经 Nrf2/ARE 通路的影响[J].中华麻醉学杂志, 2015, 35(12): 1456-1459.
[12] Fan, M., Xu, X., He, X., Chen, L., Qian, L., Liu, J., Qing, J., Chao, Z. and Sun, X. (2013) Protective Effects of Hydrogen-Rich Saline against Erectile Dysfunction in a Streptozotocin Induced Diabetic Rat Model. The Journal of Urology, 190, 350-356. https://doi.org/10.1016/j.juro.2012.12.001
[13] Wu, F., Qiu, Y., Ye, G., Luo, H., Jiang, J., Yu, F., Zhou, W., Zhang, S. and Feng, J. (2015) Treatment with Hydrogen Molecule Attenuates Cardiac Dysfunction in Streptozotocin-Induced Diabetic Mice. Cardiovascular Pathology, 24, 294-303. https://doi.org/10.1016/j.carpath.2015.04.008
[14] Guo, J., Dong, W., Jin, L., Wang, P., Hou, Z. and Zhang, Y. (2017) Hydrogen-Rich Saline Prevents Bone Loss in Diabetic Rats Induced by Streptozotocin. International Orthopaedics, 41, 2119-2128.
https://doi.org/10.1007/s00264-017-3581-4
[15] Kajiyama, S., Hasegawa, G., Asano, M., Hood, H., Fukui, M., Nakamura, N., Kitawaki, J., Imai, S., Nakano, K., Ohta,M., Adachi, T., Obayashi, H. and Yoshikawa, T. (2008) Supplementation of Hydrogen-Rich Water Improves Lipid and Glucose Metabolism in Patients with Type 2 Diabetes or Impaired Glucose Tolerance. Nutrition Research, 28, 137-143. https://doi.org/10.1016/j.nutres.2008.01.008
[16] Ogawa, S., Ohsaki, Y., Shimizu, M., Nako, K., Okamura, M., Kabayama, S., Tabata, K., Tanaka, Y. and Ito, S. (2021) Electrolyzed Hydrogen-Rich Water for Oxidative Stress Suppression and Improvement of Insulin Resistance: A Multicenter Prospective Double-Blind Randomized Control Trial. Diabetology International, 13, 209-219. https://doi.org/10.1007/s13340-021-00524-3
[17] Dole, M., Wilson, F.R. and Fife, W.P. (1975) Hyperbaric Hydrogen Therapy: A Possible Treatment for Cancer. Science, 190, 152-154. https://doi.org/10.1126/science.1166304
[18] Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., Yamagata, K., Katsura, K., Katayama, Y., Asoh, S. and Ohta, S. (2007) Hydrogen Acts as a Therapeutic Antioxidant by Selectively Reducing Cytotoxic Oxygen Radicals. Nature Medicine, 13, 688-694. https://doi.org/10.1038/nm1577
[19] Ono, H., Nishijima, Y., Ohta, S., Sakamoto, M., Kinone, K., Horikosi, T., Tamaki, M., Takeshita, H., Futatuki, T., Ohishi, W., Ishiguro, T., Okamoto, S., Ishii, S. and Takanami, H. (2017) Hydrogen Gas Inhalation Treatment in Acute Cerebral Infarction: A Randomized Controlled Clinical Study on Safety and Neuroprotection. Journal of Stroke and Cerebrovascular Diseases, 26, 2587-2594. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.012
[20] Korovljev, D., Stajer, V., Ostojic, J., LeBaron, T.W. and Ostojic, S.M. (2019) Hydrogen-Rich Water Reduces Liver Fat Accumulation and Improves Liver Enzyme Profiles in Patients with Non-Alcoholic Fatty Liver Disease: A Rando-mized Controlled Pilot Trial. Clinics and Research in Hepatology and Gastroenterology, 43, 688-693. https://doi.org/10.1016/j.clinre.2019.03.008
[21] Pirttilä, K., Videhult Pierre, P., Haglöf, J., Engskog, M., Hedeland, M., Laurell, G., Arvidsson, T. and Pettersson, C. (2019) An LCMS-Based Untargeted Metabolomics Protocol for Cochlear Perilymph: Highlighting Metabolic Effects of Hydrogen Gas on the Inner Ear of Noise Exposed Guinea Pigs. Metabolomics, 15, Article No. 138. https://doi.org/10.1007/s11306-019-1595-1
[22] Nishimaki, K., Asada, T., Ohsawa, I., Nakajima, E., Ikejima, C., Yokota, T., Kamimura, N. and Ohta, S. (2018) Effects of Molecular Hydrogen Assessed by an Animal Model and a Randomized Clinical Study on Mild Cognitive Impairment. Current Alzheimer Research, 15, 482-492. https://doi.org/10.2174/1567205014666171106145017
[23] LeBaron, T.W., Singh, R.B., Fatima, G., Kartikey, K., Sharma, J.P., Ostojic, S.M., Gvozdjakova, A., Kura, B., Noda, M., Mojto, V., Niaz, M.A. and Slezak, J. (2020) The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 889-896. https://doi.org/10.2147/DMSO.S240122
[24] Zhu, Q., Wu, Y., Li, Y., Chen, Z., Wang, L., Xiong, H., Dai, E., Wu, J., Fan, B., Ping, L. and Luo, X. (2018) Positive Effects of Hydrogen-Water Bathing in Patients of Psoriasis and Parapsoriasis En Plaques. Scientific Reports, 8, Article No. 8051. https://doi.org/10.1038/s41598-018-26388-3
[25] Long, P., Yan, W., He, M., Zhang, Q., Wang, Z., Li, M., Xue, J., Chen, T., An, J. and Zhang, Z. (2019) Protective Effects of Hydrogen Gas in a Rat Model of Branch Retinal Vein Occlusion via Decreasing VEGF-α Expression. BMC Ophthalmology, 19, Article No. 112. https://doi.org/10.1186/s12886-019-1105-2
[26] Feng, S., Duan, E., Shi, X., Zhang, H., Li, H., Zhao, Y., Chao, L., Zhong, X., Zhang, W., Li, R. and Yan, X. (2019) Hydrogen Ameliorates Lung Injury in a Rat Model of Subacute Exposure to Concentrated Ambient PM2.5 via Aryl Hydrocarbon Receptor. International Immunopharmacology, 77, Article ID: 105939. https://doi.org/10.1016/j.intimp.2019.105939
[27] Akagi, J. and Baba, H. (2019) Hydrogen Gas Restores Exhausted CD8+ T Cells in Patients with Advanced Colorectal Cancer to Improve Prognosis. Oncology Reports, 41, 301-311. https://doi.org/10.3892/or.2018.6841
[28] Hirano, S.I., Aoki, Y., Li, X.K., Ichimaru, N., Takahara, S. and Takefuji, Y. (2021). Protective Effects of Hydrogen Gas Inhalation on Radiation-Induced Bone Marrow Damage in Cancer Patients: A Retrospective Observational Study. Medical Gas Research, 11, 104-109. https://doi.org/10.4103/2045-9912.314329
[29] Chen, J., Mu, F., Lu, T., Ma, Y., Du, D. and Xu, K. (2019). A Gallbladder Carcinoma Patient with Pseudo-Progressive Remission after Hydrogen Inhalation. OncoTargets and Therapy, 12, 8645-8651. https://doi.org/10.2147/OTT.S227217
[30] 国家卫生健康委员会. 关于印发新型冠状病毒肺炎诊疗方案(试行第八版)的通知[EB/OL]. http://www.gov.cn/zhengce/zhengceku/2020-08/19/5535757/files/da89edf7cc9244fbb34ecf6c61df40bf.pdf,
2021-07-10.
[31] Guan, W., Wei, C., Chen, A., Sun, X.C., Guo, G.Y., Zou, X., et al. (2020) Hydrogen/Oxygen Mixed Gas Inhalation Improves Disease Severity and Dyspnea in Patients with Corona Virus Disease 2019 in a Recent Multi-Center, OpenLabel Clinical Trial. Journal of Thoracic Disease, 12, 3448-3452. https://doi.org/10.21037/jtd-2020-057
[32] Hong, Y., Guo, S., Chen, S., Sun, C., Zhang, J. and Sun, X. (2012) Beneficial Effect of Hydrogen-Rich Saline on Cerebral Vasospasm after Experimental Subarachnoid Hemorrhage in Rats. Journal of Neuroscience Research, 90, 1670-1680. https://doi.org/10.1002/jnr.22739
[33] Lu, Y., Li, C.F., Ping, N.N., Sun, Y.Y., Wang, Z., Zhao, G.X., Yuan, S.H., Zibrila, A.I., Soong, L. and Liu, J.J. (2020) Hydrogen-Rich Water Alleviates Cyclosporine A-Induced Nephrotoxicity via the Keap1/Nrf2 Signaling Pathway. Journal of Biochemical and Molecular Toxicology, 34, Article ID: e22467. https://doi.org/10.1002/jbt.22467
[34] Li, L., Liu, T., Liu, L., Li, S., Zhang, Z., Zhang, R., Zhou, Y. and Liu, F. (2019) Effect of Hydrogen-Rich Water on the Nrf2/ARE Signaling Pathway in Rats with Myocardial Ischemia-Reperfusion Injury. Journal of Bioenergetics and Biomembranes, 51, 393-402. https://doi.org/10.1007/s10863-019-09814-7
[35] Li, S.W., Takahara, T., Que, W., Fujino, M., Guo, W.Z., Hirano, S.I., Ye, L.P. and Li, X.K. (2021) Hydrogen-Rich Water Protects against Liver Injury in Nonalcoholic Steatohepatitis Through HO-1 Enhancement via IL-10 and Sirt 1 Signaling. American Journal of Physiology. Gastrointestinal and Liver Physiology, 320, G450-G463. https://doi.org/10.1152/ajpgi.00158.2020
[36] Zhang, Y., Xu, J., Long, Z., Wang, C., Wang, L., Sun, P., Li, P. and Wang, T. (2016) Hydrogen (H2) Inhibits Isoproterenol-Induced Cardiac Hypertrophy via Antioxidative Pathways. Frontiers in Pharmacology, 7, Article No. 392. https://doi.org/10.3389/fphar.2016.00392
[37] 李婷, 邓树豪, 雷雯, 李振坤, 吴文娟, 张涛, 董昭兴. 氢气水通过升高 Nrf2 的表达减轻百草枯诱导的肺纤维化 [J]. 南方医科大学学报, 2020, 40(2): 233-239.
[38] Wang, L., Zhao, C., Wu, S., Xiao, G., Zhuge, X., Lei, P. and Xie, K. (2018) Hydrogen Gas Treatment Improves the Neurological Outcome after Traumatic Brain Injury via Increasing MiR-21 Expression. Shock, 50, 308-315. https://doi.org/10.1097/SHK.0000000000001018
[39] Li, J., Hong, Z., Liu, H., Zhou, J., Cui, L., Yuan, S., Chu, X. and Yu, P. (2016) Hydrogen-Rich Saline Promotes the Recovery of Renal Function after Ischemia/Reperfusion Injury in Rats via Anti-Apoptosis and Anti-Inflammation. Frontiers in Pharmacology, 7, Article No. 106. https://doi.org/10.3389/fphar.2016.00106
[40] Tao, G., Song, G. and Qin, S. (2019) Molecular Hydrogen: Current Knowledge on Mechanism in Alleviating Free Radical Damage and Diseases. Acta Biochimica et Biophysica Sinica, 51, 1189-1197. https://doi.org/10.1093/abbs/gmz121
[41] Chen, O., Cao, Z., Li, H., Ye, Z., Zhang, R., Zhang, N., Huang, J., Zhang, T., Wang, L., Han, L., Liu, W. and Sun, X. (2017) High-Concentration Hydrogen Protects Mouse Heart against Ischemia/reperfusion Injury Through Activation of ThePI3K/Akt1 Pathway. Scientific Reports, 7, Article No. 14871. https://doi.org/10.1038/s41598-017-14072-x
[42] Wu, J., Wang, R., Yang, D., Tang, W., Chen, Z., Sun, Q., Liu, L. and Zang, R. (2018) Hydrogen Postconditioning Promotes Survival of Rat Retinal Ganglion Cells against Ischemia/Reperfusion Injury Through the PI3K/Akt Pathway. Biochemical and Biophysical Research Communications, 495, 2462-2468. https://doi.org/10.1016/j.bbrc.2017.12.146
[43] Wu, D., Liang, M., Dang, H., Fang, F., Xu, F. and Liu, C. (2018) Hydrogen Protects against Hyperoxia-Induced Apoptosis in Type II Alveolar Epithelial Cells via Activation of PI3K/Akt/Foxo3a Signaling Pathway. Biochemical and Biophysical Research Communications, 495, 1620-1627. https://doi.org/10.1016/j.bbrc.2017.11.193
[44] Lee, J., Yang, G., Kim, Y.J., Tran, Q.H., Choe, W., Kang, I., Kim, S.S. and Ha, J. (2017) Hydrogen-Rich Medium Protects Mouse Embryonic Fibroblasts from Oxidative Stress by Activating LKB1-AMPK-FoxO1 Signal Pathway. Biochemical and Biophysical Research Communications, 491, 733-739. https://doi.org/10.1016/j.bbrc.2017.07.119
本文献转载于护理学,不代表本网站赞同其观点和对其真实性负责,我们用于阅读分享,非商业用途,如若侵权,请告知删除。