1. 引言
随着人类生活水平的不断提高,糖尿病的患病率逐年攀升。2021 年国际糖尿病联盟数据显示,根据最新报告,全球总人数的近十分之一的成年人患有糖尿病。估计到 2030 年,人数将上升到 6.43 亿,到 2045 年将达 7.83 亿。我国现已成为世界上糖尿病发病率最高的国家,且有不断增长的趋势[1]。糖尿病是一种以胰岛素分泌异常、缺乏和(或)不敏感为表现的慢性代谢性疾病。它导致重要器官病变、功能障碍甚至于功能衰竭,特别是眼、肾、神经、心脏等。如今,糖尿病所引发的健康问题已逐渐成为全球的关注重点。
糖尿病肾病(diabetic kidney disease-DKD 是糖尿病常见并发症,易被人们忽视,现已是终末期肾病的主要病因。根据目前研究,遗传、年龄、糖代谢异常、血流动力学改变、氧化应激、炎症参与 DKD 的发生与发展已得到广泛认可。也有研究表明与肾素–血管紧张素–醛固酮系统的激活以及脱氧核糖核酸甲基化谱的变化相关[2]。随着进一步总结,发现各种因素在 DKD 致病方面均与促发炎症反应相关联,如:细胞焦亡、肠道菌群失调、内脂素增多、适应性免疫系统及相关细胞因子作用,本文就上述因素的促炎机制做一综述。
2. 细胞焦亡的促炎机制
细胞焦亡由焦亡性 Caspase 家族介导,包括 Caspase-1、4、5、11,该机制通过释放若干促炎因子如IL-1β 和 IL-18 引发一系列炎症反应。这一过程的特征是通过焦孔素(GSDM)蛋白介导,导致细胞膜破裂和细胞内容物的释放。各种病理生理变化作用于肾细胞,引起一系列炎症反应。现将内源性肾细胞(肾小管上皮细胞(TECs)和足细胞)焦亡在 DKD 中表现描述如下。
2.1. 肾小管上皮细胞焦亡
为了维持体内平衡,TECs 负责肾脏的再吸收,将部分或全部的水和几种溶质从肾小管转移到血液中,保留有用的物质,并有效地清除有害和多余的物质。在高糖(HG)条件下,TECs 易发生代谢紊乱、炎症和血流动力学改变,致活性氧(ROS)和多种炎症因子的释放,导致肾间质炎症和纤维化[3]。有相关研究报道,在急性肾损伤和造影剂所致的肾功能损害过程中会发生 TECs 焦亡[4],提示在肾脏疾病中,焦亡参与了肾小管损害的发生发展。
2.2. 足细胞焦亡
足细胞是一种终末分化细胞,一旦被损坏,它们就不能再生。基底区、基底外侧区和顶叶区共同构成足突,通过平足蛋白附着在肾小球滤过屏障上。足突与足细胞之间的狭缝隔膜形成网状结构,参与足细胞的各种信号转导途径,对维持肾小球的结构和滤过功能至关重要。肾小球滤过异常和足细胞损伤是DKD 发生蛋白尿和肾小球硬化的核心原因[5]。Cheng 等[6]发现,HG 促进了 caspase-4 和 caspase-11 的表达,并促进了执行蛋白消皮素 D (GSDMD)的分解,其为非经典焦亡途径。敲除 caspase-11 或 GSDMD 可显著改善肾功能的恶化和肾小球、足细胞的形态学改变,缓解炎症因子的冲击。
3. 肠道菌群异常的促炎机制
近年来,肠道微生物群已成为系统性免疫炎症反应风险升高和肾衰竭进展的关键因素,被称为“肠–肾轴”[7]。肠道菌群是一个复杂的生态系统,由微生物群落组成,其主要由细菌组成,但也包含其他共生菌,如古菌、病毒、真菌和原生生物[8]。而这些组分的变化与肠道健康,甚至于全身的系统性病变密切相关。肠道菌群失调的主要特征是细菌和真菌的多样性和丰度下降,特别是与功能障碍和各种病理[9]相关的细菌和真菌的改变。有研究表明,乳酸杆菌、双歧杆菌[10]、普氏菌[11]、粪杆菌[12]、瘤胃菌比例下降,肠球菌[12]、肠杆菌[13]、克雷伯杆菌、梭状芽孢杆菌均比例升高,其证实与全身炎症相关[14]。作为肠道菌群的主要构成部分,拟杆菌门和厚壁菌门,它们的生态平衡与肠道通透性增加有关,细菌的副产物经肠道屏障渗透,引发之后的炎症反应。其代谢产物包括:短链脂肪酸(short-chain fatty acids,SCFAs)、三甲胺/氧化三甲胺(trimethylamine N-oxide, TMAO)、内毒素等[15]。产生 SCFAs 的有益菌减少,相反产生尿毒素的致病菌增多,它们主要诱发内毒素血症[16],通过胆汁酸代谢、炎症状态、胰岛素抵抗和肠促胰岛素分泌的影响引起心血管、神经元、免疫和代谢紊乱[17]。有大量的研究表明,SCFAs 的减少与肾脏病变的密切相关。在局部,SCFAs 是结肠细胞的能量来源,被认为是参与肠道菌群对肠道免疫功能[18]影响的潜在介质。然而,SCFAs 可到达血流,并通过作用于其特定 G 蛋白偶联受体 43 (GPR43)参与炎症和免疫反应。Huang 等[19]研究发现,SCFAs 可增加特异性 43 (GPR43)蛋白表达,减少肾小球系膜细胞(GMCs)中单核细胞趋化因子-1 和 IL-1β 的释放,此研究提示 SCFAs 可降低局部性和系统性的炎症细胞因子和趋化因子水平。总之,SCFAs 可调节肠内外环境的炎症状态,改善肾损伤。也许在 DKD的治疗上补充 SCFAs 可延缓其进展。有大量研究表明补充益生菌、益生元及粪菌移植在治疗 DKD 方面有所成就。2018 年一项随机双盲安慰剂对照试验[20]认为摄入益生菌并不能影响炎症和氧化应激的其他标志物以及 TNF-α 和转化生长因子(TGF)-β 的基因表达、改善肠道炎症状态,但是它可通过在肠道中产生 SCFAs 和减少过氧化氢自由基的产生来减少炎症因子,有助于肠道环境调节。一项用粪便微生物群移植(FMT)重建糖尿病小鼠肠道菌群的动物实验研究[21]证明,T2DM-FMT 组 IL-6 和 TNF-α 均低于 T2DM组;IL-10 在 T2DM 组明显升高。FMT 可能通过减少促炎细胞因子的分泌和增加抗炎细胞因子的分泌来改善受损的胰岛。但 FMT 应用于 DKD 患者中的研究缺乏,需要进一步探索其治疗前景,也许会为 DKD治疗打开新的篇章。DKD 患者肠道菌群失调,其通过不同机制引发系统性炎症反应,反作用于肾脏本身,导致肾脏固有细胞损伤,肾功能下降,形成恶性循环。所以,需进行针对肠道菌群治疗,延缓 DKD 进展。
4. Visfatin 的促炎机制
内脂素(Visfatin)是一种由内脏脂肪组织优先产生并具有胰岛素模拟作用的新型脂肪因子[22]。它参与许多炎症相关疾病,如银屑病[23]、炎性肠病[24]、骨关节炎[25]等。沈寒蕾等[26]研究表明糖尿病患者血浆中 Visfatin 的浓度变化与炎症介质如:hs-CRP、IL-6、TNF-α 呈正相关变化。证实了糖尿病患者血浆中 Visfatin 与 hs-CRP、IL-6 和 TNF-α 等炎症因子密切联系,并影响糖尿病发展。唐灵等[27]研究发现,血清 Visfatin 水平在 DKD 早期已明显升高,且随着尿蛋白排泄率(UAER)的增加而增高,并与 CRP 呈正相关,提示 Visfatin 与 DKD 进展相关。内脏脂肪素调节肥胖和代谢综合征相关的病理生理活动,包括胰岛素抵抗、增强炎症反应、血管生成、合成 NAD 单核苷酸和上调抗凋亡蛋白[28]。可能通过参与调节糖脂代谢、氧化应激[29]等途径影响 DKD 发生、发展。
5. 适应性免疫系统及相关细胞因子的促炎机制
巨噬细胞是先天性免疫系统的吞噬细胞,在实验性 DKD 模型和临床试验中被广泛认为加速肾小球硬化的进展。肾脏中 90%以上的白细胞浸润是巨噬细胞[30],选择性减少巨噬细胞积聚的方法,如敲除巨噬细胞趋化因子或阻断趋化因子受体,在小鼠 DKD 模型中提供了显著的保护作用。近年来,越来越多的实验和临床研究表明,适应性免疫系统与多种炎症细胞因子协同作用,可能也是糖尿病肾损伤的关键因素,以下详细介绍。适应性免疫系统由 T 细胞和 B 细胞组成。DKD 的发展与激活血液中的 T 细胞和肾脏中 CD4+ T 细胞数量增加密切相关。
5.1. T 细胞在 DKD 发展中的致病作用
T 细胞激活和增殖水平的提高与高血糖有关[31]。最近的一项研究发现[32],一种 INSC94Y 转基因猪(出生后显示永久性糖尿病表型的大型动物模型)与野生型同窝猪相比 T 细胞增殖能力显著降低。在这项研究中,蛋白质组学分析显示了大量与免疫系统、信号转导和代谢功能相关的途径。在调控的途径中,脂肪吞噬尤其值得关注,因为它涉及免疫细胞的代谢功能障碍,这表明在糖尿病微环境下免疫细胞的代谢表型发生了改变。
在 DKD 的发展过程中,T 细胞有诱导蛋白尿的致病作用,且在 2 型糖尿病患者中存在 CD4+ T 细胞间质浸润,与蛋白尿程度相关[33]。糖尿病模型小鼠的相关研究[34],也证明了缺乏成熟 T 细胞和 B 细胞可有效减少蛋白尿,与野生型对照小鼠相比,主要表现为 UAER 和白蛋白/肌酐比值(ACR)进展缓慢。这意味着 T 细胞和 B 细胞的缺失降低了白蛋白尿的风险。这些结果均提示 T、B 细胞的增加系统地和(或)局部地参与了 DKD 患者蛋白尿发生的免疫病理过程。
5.2. DKD 中的 T 细胞相关细胞因子
研究表明,系统性和局部炎症与 DKD 的发生有关,特异性细胞因子也被广泛研究。IL-17A、IL-2、TNF 和 TNF 受体均被证实在糖尿病中具有促炎作用。几项研究报道,随着糖尿病的进展,IL-17 细胞产生数量增加,并且在非肥胖糖尿病(NOD)小鼠(1 型糖尿病模型)的血清、脾脏和胰腺中可检测出 IL-17 [35]。同样,1 型糖尿病和 2 型糖尿病患者的血清中 IL-17 水平也显著升高。另外,DKD 合并显性肾病(每日尿蛋白损失 > 3.5 g/d)患者血清IL-2R水平明显高于正常蛋白尿者(<30 mg/d)或微量白蛋白尿(30~300 mg/d),这一证据提示 IL-2R 与其他 Th1 因子协同作用,可能是 DKD 肾损伤病理发展的重要驱动因素[36]。TNF已被公认可诱导急性或慢性炎症反应,2 型糖尿病患者血清或尿中 TNF-a 水平高于非糖尿病患者[37]。这些变化表明,TNF-a 未来可能作为预测 DKD 患者进行性肾损害风险的标志物。因此,识别与 DKD 相关的标志性细胞因子和预后指标至关重要。
6. B 细胞在 DKD 发展中的致病作用
与 T 细胞相比,B 细胞在 DKD 中的作用较少,它们在 1 型糖尿病发病机制中的作用较受关注。尽管致糖尿病 T 细胞主要负责 B 细胞的破坏,但越来越多的证据表明,B 细胞通过向致糖尿病 T 细胞提出胰岛自身抗原,以及产生免疫球蛋白 G 来行使其功能,从而促进免疫复合物的形成,并随后触发血液和肾脏中的补体激活[38]。据报道,免疫复合物促进巨噬细胞增殖和肾小球炎症反应,进一步导致损伤相关分子模式的释放[39]。DKD 模型肾脏疾病进展的信号通路中 B 细胞诱导的炎症因子还需要进一步的研究。小结:DKD 是糖尿病常见的微血管并发症之一,其高糖环境导致肾脏结构和功能的进行性改变。细胞焦亡、肠道菌群失调、内脂素、适应性免疫系统及相关细胞因子通过免疫系统、信号转导和代谢功能相关的途径来导致 DKD 患者体内慢性炎症状态,甚至于加速其进展,缩短发生终末期肾脏疾病(ESRD)的时间,降低患者的生存质量。在过去的十年间,治疗 DKD 的新型药物,如:SGLT2 抑制剂、GLP-1受体激动剂、DPP-4 抑制剂逐个应用于临床治疗,其主要机制则是通过间接和直接的不同分子介导而具有抗炎、抗氧化、抗高糖的作用,来做到延缓 DKD 发展。根据以上促炎机制研究以及今后进一步的临床研究,可以为治疗 DKD 提供新思路,揭开新的篇章。
参考文献
[1] IDF (2021) IDF Diabetes Atlas. 10th Edition. http://www.diabetesatlas.org
[2] 李嘉欣, 马婷婷, 南一, 等. 糖尿病肾病发病机制研究进展[J]. 临床肾脏志, 2019, 19(11): 860-864.
[3] Xie, C., Wu, W., Tang, A., Luo, N. and Tan, Y. (2019) lncRNA GAS5/miR-452-5p Reduces Oxidative Stress and Pyroptosis of High-Glucose-Stimulated Renal Tubular Cells. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 2609-2617. https://doi.org/10.2147/DMSO.S228654
[4] Zhang, Z., et al. (2018) Caspase-11-Mediated Tubular Epithelial Pyroptosis Underlies Contrast-Induced Acute Kidney Injury. Cell Death & Disease, 9, 983. https://doi.org/10.1038/s41419-018-1023-x
[5] Nagata, M. (2016) Podocyte Injury and Its Consequences. Kidney International, 89, 1221-1230. https://doi.org/10.1016/j.kint.2016.01.012
[6] Cheng, Q., et al. (2020) Caspase-11/4 and Gasdermin D-Mediated Pyroptosis Contributes to Podocyte Injury in Mouse Diabetic Nephropathy. Acta Pharmacologica Sinica, 42, 954-963. https://doi.org/10.1038/s41401-020-00525-z
[7] Correa-Oliveira, R., Fachi, J.L., Vieira, A., et al. (2016) Regulation of Immune Cell Function by Short-Chain Fatty Acids. Clinical & Translational Immunology, 5, e73. https://doi.org/10.1038/cti.2016.17
[8] Matijasic, M., Mestrovic, T., Paljetak, H.C., Peric, M., Baresic, A. and Verbanac, D. (2020) Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD. International Journal of Molecular Sciences, 21, 2668. https://doi.org/10.3390/ijms21082668
[9] Jayasudha, R., Das, T., Kalyana Chakravarthy, S., Sai Prashanthi, G., Bhargava, A., Tyagi, M., Rani, P.K., Pappuru, R.R. and Shivaji, S. (2020) Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLOS ONE, 15, e0243077. https://doi.org/10.1371/journal.pone.0243077
[10] Kieffer, D.A., Piccolo, B.D., Vaziri, N.D., Liu, S., Lau, W.L., Khazaeli, M., Nazertehrani, S., Moore, M.E., Marco, M.L., Martin, R.J., et al. (2016) Resistant Starch Alters Gut Microbiome and Metabolomic Profiles Concurrent with Amelioration of Chronic Kidney Disease in Rats. The American Journal of Physiology-Renal Physiology, 310, F857-F871. https://doi.org/10.1152/ajprenal.00513.2015
[11] Xu, K.Y., Xia, G.H., Lu, J.Q., Chen, M.X., Zhen, X., Wang, S., You, C., Nie, J., Zhou, H.W. and Yin, J. (2017) Impaired Renal Function and Dysbiosis of Gut Microbiota Contribute to Increased Trimethylamine-N-Oxide in Chronic Kidney Disease Patients. Scientific Reports, 7, Article No. 1445. https://doi.org/10.1038/s41598-017-01387-y
[12] Jiang, S., Xie, S., Lv, D., Wang, P., He, H., Zhang, T., Zhou, Y., Lin, Q., Zhou, H., Jiang, J., et al. (2017) Alteration of the Gut Microbiota in Chinese Population with Chronic Kidney Disease. Scientific Reports, 7, Article No. 2870. https://doi.org/10.1038/s41598-017-02989-2
[13] Vaziri, N.D., Yuan, J., Nazertehrani, S., Ni, Z. and Liu, S. (2013) Chronic Kidney Disease Causes Disruption of Gastric and Small Intestinal Epithelial Tight Junction. American Journal of Nephrology, 38, 99-103. https://doi.org/10.1159/000353764
[14] Kanbay, M., Onal, E.M., Afsar, B., Dagel, T., Yerlikaya, A., Covic, A. and Vaziri, N.D. (2018) The Crosstalk of Gut Microbiota and Chronic Kidney Disease: Role of Inflammation, Proteinuria, Hypertension, and Diabetes Mellitus. International Urology and Nephrology, 50, 1453-1466. https://doi.org/10.1007/s11255-018-1873-2
[15] Sabatino, A., Regolisti, G., Cosola, C., et al. (2017) Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Isease. Current Diabetes Reports, 17, 16. https://doi.org/10.1007/s11892-017-0841-z
[16] Tao, S., Li, L., Li, L., et al. (2019) Understanding the Gut-Kidney Axis among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition. Acta Diabetologica, 56, 581-592. https://doi.org/10.1007/s00592-019-01316-7
[17] Mazloom, K., Siddiqi, I. and Covasa, M. (2019) Probiotics: How Effective Are They in the Fight against Obesity? Nutrients, 11, 258. https://doi.org/10.3390/nu11020258
[18] Lin, M.Y., de Zoete, M.R., van Putten, J.P., et al. (2015) Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Frontiers in Immunology, 6, Article No. 554. https://doi.org/10.3389/fimmu.2015.00554
[19] Huang, W., Guo, H.L., Deng, X., et al. (2017) Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Experimental and Clinical Endocrinology & Diabetes, 125, 98-105. https://doi.org/10.1055/s-0042-121493
[20] Mafifi, A., Namazi, G., Soleimani, A., Bahmani, F., Aghadavod, E. and Asemi, Z. (2018) Metabolic and Genetic Response to Probiotics Supplementation in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, PlaceboControlled Trial. Food & Function, 9, 4763-4770. https://doi.org/10.1039/C8FO00888D
[21] Wang, H., Lu, Y., Yan, Y., et al. (2019) Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Frontiers in Cellular and Infection Microbiology, 9, Article No. 455. https://doi.org/10.3389/fcimb.2019.00455
[22] Sethi, J.K. and Vidal-Puig, A. (2005) Visfatin: The Missing Link between Intra-Abdominal Obesity and Diabetes? Trends in Molecular Medicine, 11, 344-347. https://doi.org/10.1016/j.molmed.2005.06.010
[23] Chyl-Surdacka, K.M., Bartosinska, J., Kowal, M., et al. (2020) Assessment of Visfatin Concentrations in the Serum of Male Psoriatic Patients in Relation to Metabolic Abnormalities. Advances in Clinical and Experimental Medicine, 29, 79-84. https://doi.org/10.17219/acem/111820
[24] Neubauer, K., Bednarz-Misa, I., Walecka-Zacharska, E., et al. (2019) Oversecretion and Overexpression of Nicotinamide Phosphoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Activity, Severity of Inflammatory Response and Hypoxia. International Journal of Molecular Sciences, 20, 166. https://doi.org/10.3390/ijms20010166
[25] Cheleschi, S., Tenti, S., Mondanelli, N., et al. (2021) MicroRNA-34a and MicroRNA-181a Mediate Visfatin-Induced Apoptosis and Oxidative Stress via NF-κB Pathway in Human Osteoarthritic Chondrocytes. Cells, 8, 874. https://doi.org/10.3390/cells8080874
[26] 沈寒蕾, 赖战峰, 谭晓丹, 邓宏明, 黄媛, 张峥嵘, 肖常青. 2 型糖尿病患者血浆内脂素与炎症因子的相关性研究[J]. 中国现代医学杂志, 2012, 22(7): 44-47.
[27] 唐灵, 陈春莲, 苏桂兰, 刘树娇, 陈虹. 2 型糖尿病肾病患者内脂素、脂联素和 C 反应蛋白变化及其临床意义[J].中国全科医学, 2011, 14(23): 2616-2619.
[28] Kumari, B. and Yadav, U.C.S. (2018) Adipokine Visfatin’s Role in Pathogenesis of Diabesity and Related Metabolic Derangements. Current Molecular Medicine, 18, 116-125. https://doi.org/10.2174/1566524018666180705114131
[29] 廖鑫, 邓凡曲, 杨丹, 等. 内脂素对大鼠成肌细胞 PI3K/Akt 信号通路及胰岛素敏感性影响的研究[J]. 中国糖尿病杂志, 2019, 27(9): 677-681.
[30] Chow, F., Ozols, E., Nikolic-Paterson, D.J., et al. (2004) Macrophages in Mouse Type 2 Diabetic Nephropathy: Correlation with Diabetic State and Progressive Renal Injury. Kidney International, 65, 116-128. https://doi.org/10.1111/j.1523-1755.2004.00367.x
[31] Mahmoud, F. and Al-ozairi, E. (2013) Inflammatory Cytokines and the Risk of Cardiovascular Complications in Type 2. Diabetes, 35, 235-241. https://doi.org/10.1155/2013/931915
[32] Giese, I.-M., Schilloks, M.-C., Degroote, R.L., et al. (2021) Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs. Frontiers in Immunology, 11, Article ID: 607473. https://doi.org/10.3389/fimmu.2020.607473
本文献转载于临床医学进展,不代表本公众号赞同其观点和对其真实性负责,我们用于阅读分享,非商业用途,如若侵权,请告知删除。