Hallmarks of aging: An expanding universe---3

12 8月 2024
Author :  

Other prolongevity interventions on gut microbiota

      The probiotic Lactobacillus plantarum GKM3 promotes longevity and alleviates age-related cognitive impairment in the SAMP8 mouse model of accelerated aging.89 Interventions on gut microbiota composition also restored the age-linked decline in microglial maturation and function which causes altered brain plasticity and promotes neurodegeneration. Recolonization experiments or administration of gut microbiota metabolites, such as SCFAs, prevented the age-associated decline of beneficial Bifidobacterium, increased Akkermansia abundance, and restored microglial function in middle-aged mice.94 Moreover, caloric restriction diets induce structural changes of the gut microbiome increasing the abundance of Lactobacillus and other species that influence healthy aging. The gut microbiotainduced inflammaging and the consequent increase in insulin resistance can also be reversed by restoring abundance of beneficial SCFA-producing bacteria, such as A. muciniphila, in agedmice and macaques.293 Similarly, a randomized, double-blind, placebo-controlled pilot study in overweight/obese insulin-resistant volunteers showed that oral administration of pasteurized A. muciniphila improved insulin sensitivity reduced insulinemia and plasma total cholesterol levels.95 Collectively, these results underscore the causal links between aging and dysbiosis and suggest that interventions aimed at restoring a youthful microbiome may extend healthspan and lifespan.

INTEGRATION OF HALLMARKS

      All the 12 hallmarks of aging are strongly related among each other. For example, genomic instability (including that caused by telomere shortening) crosstalks to epigenetic alterations (e.g., through the loss-of-function mutation of epigenetic modifiers such as TET2), loss of proteostasis (e.g., due to the production of mutated, misfolded proteins), disabled macroautophagy (e.g., through the capacity of autophagy to remove supernumerary centrosomes, extranuclear chromatin, and cytosolic DNA), deregulated nutrient-sensing (e.g., because SIRT6 is an NAD+sensor involved in DNA repair but also responding to nutrient scarcity), mitochondrial dysfunction (e.g., due to the mutation of mtDNA), cellular senescence (e.g., because DNA damage triggers senescence), altered intercellular communication (e.g., by hampering activation of communication pathways), chronic inflammation (e.g., because CHIP and leakage of DNA into the cytosol induce inflammation), and dysbiosis (e.g., because mutations in intestinal cells favors dysbiosis, whereas specific microbial proteins and metabolites act as mutagens). Similar functional relationships can be listed for most if not all hallmarks of aging, illustrating their formidable interconnectivity.

      This entanglement is also visible at the level of experimental anti-aging interventions that often simultaneously target several hallmarks. Thus, SIRT activators including NAD+ precursors attenuate genomic instability (via DNA repair), epigenetic alterations (via histone deacetylation), loss of proteostasis (via the removal of protein aggregates), disabled macroautophagy (via autophagy enhancement), deregulated nutrient-sensing (via activation of nutrient scarcity sensors), and mitochondrial dysfunction (via an increase in mitophagy-dependent quality control).176 Spermidine complexes to DNA (hence counteracting genomic instability), affects translation (avoiding loss of proteostasis), stimulates macroautophagy, reverses lymphocyte senescence, prevents the exhaustion of muscle stem cells, maintains circadian rhythms, suppresses inflammation, stimulates cancer immunosurveillance, and is produced by intestinal bacteria. 294 Metformin has a pleiotropic mode of action including induction of autophagy, activation of the nutrient scarcity sensor AMPK, inhibition of mitochondrial respiration, alleviation of adipocyte senescence, suppression of inflammation, and favorable shifts in the gut microbiota.210 Similarly, maintenance of eubiosis by oral supplementation of A. muciniphila stimulates intestinal autophagy, reduces metabolic syndrome, dampens inflammation, and enhances anticancer immune responses.295 Indeed, a notable feature of effective anti-aging interventions, such as lowered insulin/IGF-1 signaling296 and disruption of the TORC1 complex,296,297 is the diversity of mechanisms by which they target different aging hallmarks in different tissues to maintain healthspan of the whole organism.

      Although each of the 12 hallmarks of aging can be targeted one by one, yielding tangible benefits for healthspan and lifespan (Table 1), there is some kind of hierarchy among them (Figure 1). Thus, as we initially proposed,1 the primary hallmarks, which reflect damages affecting the genome, telomeres, epigenome, proteome, and organelles, progressively accumulate with time and unambiguously contribute to the aging process.298 The antagonistic hallmarks, which reflect responses to damage, play a more nuanced role in the aging process. For example, trophic signaling and anabolic reactions activated by nutrientsensing have beneficial actions in youth but are largely pro-ageing later on. Thus, in an archetypal case of antagonistic pleiotropy, the nutrient-sensing network contributes to organ development until young adulthood but plays a detrimental role beyond this stage. Additionally, reversible and low-dose mitochondrial dysfunction can stimulate beneficial counterreactions (via mitohormesis), whereas limited and spatially confined levels of cellular senescence contribute to the suppression of oncogenesis and improve wound healing. Finally, the integrative hallmarks arise when the accumulated damage inflicted by the primary and antagonistic hallmarks cannot be compensated any more, resulting in stem cell exhaustion, intercellular communication alterations including ECM damage, chronic inflammation, and dysbiosis, which together dictate the pace of aging.

      Recently, we postulated the existence of eight hallmarks of health,146 which include organizational features of spatial compartmentalization (integrity of barriers and containment of local perturbations), maintenance of homeostasis over time (recycling and turnover, integration of circuitries, and rhythmic oscillations), and an array of adequate responses to perturbation (homeostatic resilience, hormetic regulation, and repair and regeneration). Undoubtedly, aging is linked to progressive deterioration of these eight hallmarks of health, implying a ramping incapacity to maintain spatial compartmentalization (with the consequent loss of integrity of internal and external barriers, as well as the incapacity to contain perturbations of such barriers in space and time), to assure long-term homeostasis (with reduced capacity of recycling and turnover, inefficient coordination among different systems via integrated circuitries, and desynchronization of ultradian, circadian, or infradian rhythms), and to adequately respond to stress by complete repair and regeneration, homeostatic resilience, and hormetic regulation (Figure 7). This decline affects all eight strata of organismal organization, across different classes of molecules (such as DNA, RNA, proteins, and metabolites), organelles (such as nuclei, mitochondria, and lysosomes), cell types (such as parenchymatous, auxiliary/stromal, and inflammatory/immune cells), supracellular units constituting the minimal functional entities of organs, entire organs within their anatomical boundaries, organ systems (such as the gastrointestinal, respiratory, and urinary tracts), systemic circuitries (with their endocrine, neurological, lymphatic, and vascular connections), as well as the meta-organism (that includes the microbiota). As a result, the 12 hallmarks of aging are interconnected to the eight hallmarks of failing health and the eight strata of organismal organization (Figure 7), creating a multidimensional space of interactions that may explain some features of the aging process.

      Heterochronic parabiosis experiments, in which the vascular systems of young and old mice are connected, may illustrate best the importance of systemic regulatory factors (such as hormones and circulating cells) on the aging process. This phenomenon has been extensively characterized at the level of single-cell transcriptomics, yielding a spatiotemporal map of the capacity of the young system to rejuvenate an older one or, vice versa, the ability of pro-aging factors to precipitate the senescence of young cells.74,75 This type of experiment demonstrates that aging relies on the integration of cell-autonomous and non-cell-autonomous mechanisms that also have been revealed in Drosophila (in which stimulation of autophagy in the intestine is sufficient to extend lifespan of the entire organism)120 and mice (in which injection of a few thousands of senescent fibroblasts is sufficient to trigger invalidating osteoarthritis).299 Hence, pro-aging and anti-aging mechanisms can be communicated among distinct cell types, perhaps explaining that ‘‘normal’’ aging usually affects multiple organs in a closeto-synchronous fashion, at difference with ‘‘pathological’’ aging in which time-dependent diseases precociously manifest in specific locations, in the form of initially isolated cardiovascular, oncological, or neurodegenerative disorders. However, the distinction between normal and pathological aging is debatable,300 and some progeroid syndromes manifest signs of incomplete or segmental aging, as exemplified by the absence of a central nervous phenotype in HGPS.

      In view of the spectacular progress of developing longevity strategies in mammalian model organisms and initial clinical trials (Table 1), it will be important to develop rational strategies for intervening into human aging. The question arises to which extent strategies for extending human healthspan should be based on the avoidance of age-accelerating environmental factors (such as pollution, stress, inadequate physical activity, and unhealthy diets, often unavoidable in a context of poverty, precariousness, and wartime), the adoption of health-promoting lifestyle factors (such as diet, exercise, regular sleeping patterns, and social activities), the administration of relatively non-specific, pleiotropic drugs (exemplified by NAD+ precursors, metformin, spermidine, or MTORC1 inhibitors), or more specific medical interventions. Such specific treatments may involve pharmacological agents—with the prospective of a broad implementation, genetic or cell-based therapies—with rather complex logistics and elevated costs, or bioengineering methods for surgical tissue replacement, which most likely will mainly remain in the realm of experimentation. Given the multiplicity of hallmarks offering therapeutic strategies for decelerating, halting, or reversing aging, it will be interesting to evaluate combination regimens with the scope of maximizing benefits and minimizing side effects. The question remains open whether such healthspan and lifespan extending prophylactic treatments will profit from personalization based on individual patient characteristics determined by the genetic, epigenetic, metabolomic, or phenotypic assessments of aging clocks.

      Aging is not yet a recognized target for drug development or for treatment. For this reason, the first clinical trials evaluating antiaging interventions must deal with the prevention or mitigation of age-associated pathologies rather than aging itself. Although such trials have been designed to target high-risk populations (such as patients with myocardial infarction and laboratory signs of inflammation in the CANTOS trial or patients with frailty or cardiovascular events to be enrolled in future metformin-related trials) and to measure the manifestation of a second cardiovascular event or aggravation of frailty, there is a risk that they are programmed too late, which is of significant concern. Indeed, at this point, academic geroscience may raise or fall as the function of the outcome of the first randomized, double-blinded phase 3 trials. The new directions of the hallmarks of aging may provide an improved framework for the development of effective interventions aimed at the extension of healthy longevity.

ACKNOWLEDGMENTS

      We apologize for omitting relevant works and citations due to space constraints. We acknowledge all members of our laboratories for helpful comments during the elaboration of this manuscript. We thank Jose´M.P.Freije for critical reading of the manuscript. C.L-O. is supported by grants from the European Research Council (ERC Advanced Grant, DeAge), Ministerio de Ciencia e Innovacio´n, Instituto de Salud Carlos III, and La Caixa Foundation (HR17-00221). The Instituto Universitario de Oncologı´a is supported byFundacio´n Bancaria Caja de Ahorros de Asturias. M.B. is funded by AgenciaEstatal de Investigacio´n (AEI/MCI/10.13039/501100011033, project RETOS SAF2017-82623-R), cofunded by European Regional Development Fund, ‘‘A way of making Europe’’; Comunidad de Madrid with the Sinergy Project COVIDPREclinicalMODels-CM and the ERC under the European Union’s Horizon 2020 research and innovation programme (grant 882385) through the project ERC-AvG SHELTERINS. The CNIO, certified as Severo Ochoa Centre of Excellence by AEI/MCI/10.13039/501100011033, is supported by the Spanish Government through the Instituto de Salud Carlos III. L.P. is supported by Horizon 2020 Framework Programme 741989, the Max Planck Society, and the BBSRC. M.S. is funded by a core grant from the IRB, La Caixa Foundation, the Milky Way Research Foundation, and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement of Catalonia (Grup de Recerca Consolidat 2017 SGR 282). G.K. is supported by the Ligue contre le Cancer (e ´quipe labellise´ e); Agence National de la Recherche (ANR)–Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cance ´ ropo ˆ le Ile-de-France; Fondation pour la Recherche Me´ dicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases; the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer; Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18- IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Universite ´ de Paris ANR-18-IDEX-0001.

DECLARATION OF INTERESTS

      M.A.B. is founder and shareholder of Life Length, SL, which commercializes telomere length measurements for biomedical use. M.S. is shareholder and advisor of Rejuveron Senescence Therapeutics, AG, and Altos Labs, Inc.; and shareholder of Senolytic Therapeutics, Inc., and Life Biosciences, Inc. G.K. has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Sotio, Tollys, Vascage, and Vasculox/Tioma; consulting for Reithera and is on the Board of Directors of the Bristol Myers Squibb Foundation France. G.K. is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics, and Therafast Bio. G.K. is the inventor of patents covering therapeutic targeting of aging, cancer, cystic fibrosis, and metabolic disorders and has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Tollys, and Vascage; has been consulting for Reithera; is on the Board of Directors of the Bristol Myers Squibb Foundation France, and is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics, and Therafast Bio. G.K.’s wife, Laurence Zitvogel has held research contracts with 9 Meters Biopharma, Daiichi Sankyo, Pilege, was on the on the Board of Directors of Transgene, is a co-founder of everImmune, and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. G.K.’s brother, Romano Kroemer, was an employee of Sanofi and has consulted for Boehringer-Ingelheim. None of the funders had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

1. Lo´pez-Otı´n, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194–1217. https://doi.org/ 10.1016/j.cell.2013.05.039.

2. Fraser, H.C., Kuan, V., Johnen, R., Zwierzyna, M., Hingorani, A.D., Beyer, A., and Partridge, L. (2022). Biological mechanisms of aging predict age-related disease co-occurrence in patients. Aging Cell 21, e13524. https://doi.org/10.1111/acel.13524.

3. Vijg, J., and Dong, X. (2020). Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182, 12–23. https://doi.org/ 10.1016/j.cell.2020.06.024.

4. Miller, K.N., Victorelli, S.G., Salmonowicz, H., Dasgupta, N., Liu, T., Passos, J.F., and Adams, P.D. (2021). Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184, 5506–5526. https://doi.org/10. 1016/j.cell.2021.09.034.

5. Huang, Z., Sun, S., Lee, M., Maslov, A.Y., Shi, M., Waldman, S., Marsh, A., Siddiqui, T., Dong, X., Peter, Y., et al. (2022). Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat. Genet. 54, 492–498. https://doi.org/10.1038/ s41588-022-01035-w.

6. Blokzijl, F., de Ligt, J., Jager, M., Sasselli, V., Roerink, S., Sasaki, N., Huch, M., Boymans, S., Kuijk, E., Prins, P., et al. (2016). Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264. https://doi.org/10.1038/nature19768.

7. Miller, M.B., Huang, A.Y., Kim, J., Zhou, Z., Kirkham, S.L., Maury, E.A., Ziegenfuss, J.S., Reed, H.C., Neil, J.E., Rento, L., et al. (2022). Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604, 714–722. https://doi.org/10.1038/s41586-022-04640-1.

8. Martincorena, I., Fowler, J.C., Wabik, A., Lawson, A.R.J., Abascal, F., Hall, M.W.J., Cagan, A., Murai, K., Mahbubani, K., Stratton, M.R., et al. (2018). Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917. https://doi.org/10.1126/science. aau3879.

9. Nik-Zainal, S., and Hall, B.A. (2019). Cellular survival over genomic perfection. Science 366, 802–803. https://doi.org/10.1126/science. aax8046.

10. Balmain, A. (2020). The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat. Genet. 52, 1139–1143. https://doi.org/10.1038/s41588-020-00727-5.

11. Cagan, A., Baez-Ortega, A., Brzozowska, N., Abascal, F., Coorens, T.H.H., Sanders, M.A., Lawson, A.R.J., Harvey, L.M.R., Bhosle, S., Jones, D., et al. (2022). Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524. https://doi.org/10.1038/s41586-022- 04618-z.

12. Hennekam, R.C.M. (2020). Pathophysiology of premature aging characteristics in Mendelian progeroid disorders. Eur. J. Med. Genet. 63,104028. https://doi.org/10.1016/j.ejmg.2020.104028.

13. North, B.J., Rosenberg, M.A., Jeganathan, K.B., Hafner, A.V., Michan, S., Dai, J., Baker, D.J., Cen, Y., Wu, L.E., Sauve, A.A., et al. (2014). SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453. https://doi.org/10.15252/embj.201386907.

14. Quesada, V., Freitas-Rodrı´guez, S., Miller, J., Pe´ rez-Silva, J.G., Jiang, Z.F., Tapia, W., Santiago-Ferna´ndez, O., Campos-Iglesias, D., Kuderna, L.F.K., Quinzin, M., et al. (2019). Giant tortoise genomes provide insights into longevity and age-related disease. Nat. Ecol. Evol. 3, 87–95. https:// doi.org/10.1038/s41559-018-0733-x.

15. Tian, X., Firsanov, D., Zhang, Z., Cheng, Y., Luo, L., Tombline, G., Tan, R., Simon, M., Henderson, S., Steffan, J., et al. (2019). SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177, 622–638.e22. https://doi.org/10.1016/j.cell.2019.03.043.

16. Roichman, A., Elhanati, S., Aon, M.A., Abramovich, I., Di Francesco, A., Shahar, Y., Avivi, M.Y., Shurgi, M., Rubinstein, A., Wiesner, Y., et al. (2021). Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat. Commun. 12, 3208. https://doi.org/10.1038/s41467-021-23545-7.

17. Michel, M., Benı´tez-Buelga, C., Calvo, P.A., Hanna, B.M.F., Mortusewicz, O., Masuyer, G., Davies, J., Wallner, O., Sanjiv, K., Albers, J.J., et al. (2022). Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function. Science 376, 1471–1476. https://doi.org/10.1126/science.abf8980.

18. Gordon, L.B., Rothman, F.G., Lo´pez-Otı´n, C., and Misteli, T. (2014). Progeria: a paradigm for translational medicine. Cell 156, 400–407. https://doi.org/10.1016/j.cell.2013.12.028.

19. Toma´s-Loba, A., Flores, I., Ferna´ndez-Marcos, P.J., Cayuela, M.L., Maraver, A., Tejera, A., Borra ´ s, C., Matheu, A., Klatt, P., Flores, J.M., et al. (2008). Telomerase reverse transcriptase delays aging in cancerresistant mice. Cell 135, 609–622. https://doi.org/10.1016/j.cell.2008. 09.034.

20. Jaskelioff, M., Muller, F.L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A.C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadin˜anos, J., et al.(2011). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106. https://doi.org/10. 1038/nature09603.

21. Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A.M., Ayuso, E., Bosch, F., and Blasco, M.A. (2012). Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704. https://doi.org/10.1002/emmm. 201200245.

22. Mun˜oz-Lorente, M.A., Cano-Martin, A.C., and Blasco, M.A. (2019). Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat. Commun. 10, 4723. https://doi.org/10.1038/s41467-019- 12664-x.

23. Shim, H.S., Horner, J.W., Wu, C.-J., Li, J., Lan, Z.D., Jiang, S., Xu, X., Hsu, W.-H., Zal, T., Flores, I.I., et al. (2021). Telomerase reverse transcriptase preserves neuron survival and cognition in Alzheimer’s disease models. Nat Aging 1, 1162–1174. https://doi.org/10.1038/s43587-021- 00146-z.

24. Povedano, J.M., Martinez, P., Serrano, R., Tejera, A´., Go´mez-Lo´pez, G., Bobadilla, M., Flores, J.M., Bosch, F., and Blasco, M.A. (2018). Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife 7, e31299. https://doi. org/10.7554/eLife.31299.

25. Ba¨r, C., Povedano, J.M., Serrano, R., Benitez-Buelga, C., Popkes, M., Formentini, I., Bobadilla, M., Bosch, F., and Blasco, M.A. (2016). Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 127, 1770–1779. https:// doi.org/10.1182/blood-2015-08-667485.

26. Demidenko, O., Barardo, D., Budovskii, V., Finnemore, R., Palmer, F.R., Kennedy, B.K., and Budovskaya, Y.V. (2021). Rejuvant , a potential life extending compound formulation with alpha-ketoglutarate and vitamins, conferred an average 8 year reduction in biological aging, after an average of 7 months of use, in the TruAge DNA methylation test. Aging (Albany, NY) 13, 24485–24499. https://doi.org/10.18632/aging.203736.

27. Fahy, G.M., Brooke, R.T., Watson, J.P., Good, Z., Vasanawala, S.S., Maecker, H., Leipold, M.D., Lin, D.T.S., Kobor, M.S., and Horvath, S. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028. https://doi.org/10.1111/acel.13028.

28. Wang, W., Zheng, Y., Sun, S., Li, W., Song, M., Ji, Q., Wu, Z., Liu, Z., Fan, Y., Liu, F., et al. (2021). A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13, eabd2655. https://doi.org/10.1126/scitranslmed.abd2655.

29. Bhatt V., Tiwari A.K. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int. J. Neurosci. 2022, Published online May 13, 2022:1–26. https://doi.org/10.1080/00207454.2022.2057849.

30. He, W.-Z., Yang, M., Jiang, Y., He, C., Sun, Y.-C., Liu, L., Huang, M., Jiao, Y.-R., Chen, K.-X., Hou, J., et al. (2022). miR-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death Dis. 13, 494. https://doi.org/10.1038/s41419-022-04902-w.

31. Kumar, S., Morton, H., Sawant, N., Orlov, E., Bunquin, L.E., Pradeep kiran, J.A., Alvir, R., and Reddy, P.H. (2021). MicroRNA-455-3p improves synaptic, cognitive functions and extends lifespan: relevance to Alzheimer’s disease. Redox Biol. 48, 102182. https://doi.org/10.1016/j. redox.2021.102182.

32. Simon, M., Van Meter, M., Ablaeva, J., Ke, Z., Gonzalez, R.S., Taguchi, T., De Cecco, M., Leonova, K.I., Kogan, V., Helfand, S.L., et al. (2019). LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885.e5. https://doi.org/10.1016/j. cmet.2019.02.014.

33. Dong, S., Wang, Q., Kao, Y.-R., Diaz, A., Tasset, I., Kaushik, S., Thiruthu vanathan, V., Zintiridou, A., Nieves, E., Dzieciatkowska, M., et al. (2021). Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 591, 117–123. https://doi.org/10.1038/s41586-020- 03129-z.

34. Madrigal-Matute, J., de Bruijn, J., van Kuijk, K., Riascos-Bernal, D.F., Diaz, A., Tasset, I., Martı´n-Segura, A., Gijbels, M.J.J., Sander, B., Kaushik, S., et al. (2022). Protective role of chaperone-mediated autophagy against atherosclerosis. Proc. Natl. Acad. Sci. USA 119. e2121133119. https://doi.org/10.1073/pnas.2121133119.

35. Bobkova, N.V., Evgen’ev, M., Garbuz, D.G., Kulikov, A.M., Morozov, A., Samokhin, A., Velmeshev, D., Medvinskaya, N., Nesterova, I., Pollock, A., et al. (2015). Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc. Natl. Acad. Sci. USA 112, 16006–16011. https://doi.org/10.1073/pnas.1516131112.

36. Hafycz, J.M., Strus, E., and Naidoo, N. (2022). Reducing ER stress with chaperone therapy reverses sleep fragmentation and cognitive decline in aged mice. Aging Cell 21, e13598. https://doi.org/10.1111/acel.13598.

37. Dalla Bella, E., Bersano, E., Antonini, G.,. Borghero, G., Capasso, M., Caponnetto, C, Chio, A, Corbo, M., Filosto, M., Giannini, F., et al. (2021). The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain 144, 2635- 2647. https://doi.org/10. 1093/brain/ awab167.

38. Pyo,J.-O., Yoo, S.-M., Ahn, H.-H., Nah, J.. Hong, S.-H.,. Kam, T.-l, Jung, S, and Jung, Y.-K. (2013). Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300.https://doi. org/10.1038/ncomms3300.

39. Femandez, A.F., Sebti, S., Wei, Y., Zou, Z., Shi, M., McMillan, K.L, He, C., Ting, T., Liu, Y., Chiang, W.-C., et al. (2018). Disruption of the beclin 1- BCL 2 autophagy regulatory complex promotes longevity in mice. Nature 558, 136-140. https://doi.org/10. 1038/s41586-018-0162-7.

40. Wang, C., Haas, M., Yeo, S.K, Sebti, S., Femandez, A.F., Zou, Z.. Levine, B., and Guan, J.-L. (2022). Enhanced autophagy in Becn1 F121A/F121A knockin mice counteracts aging-related neural stem cell exhaustion and dysfunction. Autophagy 18, 409- -422. htp://oi.org/10.1080/ 15548627. .2021.1936358.

41. Eisenberg, T., Abdellatif, M., Schroeder, S., Primessnig, U., Stekovic, S., Pendl, T., Harger, A., Schipke, J, Zimmermann, A., Schmidt, A., et al. (2016). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med.22, 1428-1438. htps://doi.org/10.1038/nm.4222.

42. Castoldi, F., Humeau, J.,. Martins, L, Lachkar, S., Loew, D., Dngli, F., Durand, S., Enot, D., Bossut, N., Chery, A, et al. (2020). Autophagy-mediated metabolic effects of aspirin. Cell Death Discov. 6, 129. https://doi. org/10.1038/s4 1420-020-00365-0.

43. Tezil, T., Chamoli, M., Ng, C.-P., Simon, R.P.. Butler, V.J., Jung, M., Andersen, J., Kao, AW., and Verdin, E. (201 9). Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. NPJ Aging Mech. Dis. 5, 7. hts://doi.org/10.1038/s41514-019-0037-7.

44. Yoshino, M., Yoshino, J., Kayser, B.D., Patti, G.J., Franczyk, M.P., Mills, K.F., Sindelar, M., Pietka, T., Patterson, B.W., Imai, S.-., et al. (2021). Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 372, 1224-1 229. https://doi.org/10.1 126/science.abe9985.

45. Brakedal, B., Dolle, C., Riemer, F., Ma, Y., Nido, G.S, Skeie, G.0., Craven, A.R., Schwarlmiller, T., Brekke, N., Diab, J., et al. (2022). The NADPARK study: A randomized phase 1 trial of nicotinamide riboside
supplementation in Parkinson's disease. Cell Metab. 34, 396- 407.e6. https://doi.org/10.1016/j.cmet.2022. 02.001.

46. Chen, A.C., Martin, A.J, Choy, B., Femandez-Penas, P., Daliell, R.A., McKenzie, C.A, Scolyer, R.A., Dhillon, H.M., Vardy, J.L, Kricker, A., et al. (2015). A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 373, 1618-1626. https://doi.org/10. 1056/NEJMoa1506197.

47. Singh, A., D'Amico, D., Andreux, P.A, Fouassier, A.M., Blanco-Bose, W., Evans, M., Aebischer, P., Auwerx, J, and Rinsch, C. (2022). Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle -aged adults. Cell Rep. Med.3, 100633. https://doi.org/10.101 6/j.xcrm.2022.100633.

48. Duran-Ortiz, S., List, E.0, Ikeno, Y., Young, J, Basu, R, Bell, S., McHugh, T., Funk, K., Mathes, S., Qian, Y, et al. (2021). Growth homone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell 20, e13506. https:// doi.og/10.1111/acel.13506. 49. Acosta-Rodriguez, V., Rijo-Ferreira, F.. Izumo, M., Xu, P., Wight-Carter, M., Green, C.B., and Takahashi, J.S. (2022)- Circadian alignment of early onset caloric restriction promotes longevity in male C57BL _/6J mice. Science 376, 1192-1202. https://doi.org/10.1126/science .abk0297.

50. Spadaro, 0.. Youm, Y., Shchukina, 1., Ryu, s., Sidorov, S., Ravussin, A., Nguyen, K., Aladyeva, E., Predeus, A.N, Smith, S.R., et al. (2022)- Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671- -677. https://doi.org/10.1 126/science.abg7292.

51. Fan, s.-z., Lin, C.-S., Wei, Y.-W., Yeh, S.-R., Tsai, Y.-H., Lee, A.C., Lin, W.-s., and Wang, P.-Y. (2021). Dietary citrate supplementation enhances longevity, metabolic health, and memory performance through promoting ketogenesis. Aging Cell 20, e13510. https://doi.org/10.1111/acel.13510.

52. Tavallaie, M., Voshtani, R, Deng, X., Qiao, Y., Jiang,Collman, J. and Fu, L. (2020). Moderation of mitochondrial respiration mitigates metabolic syndrome of aging. Proc. Natl. Acad. Sci. USA 117, 9840-
9850. https://doi.org/10.1073/pnas. 1917948117.

53. Goedeke, L, Murt, K.N., Di Francesco, A, Camporez, JP., Nasiri, A.,Wang, Y., Zhang, X.-M., Cline, G.W., de Cabo, R., and Shulman, G.I.(2022)- Sex- and strain-specific effects of mitochondrial uncoupling on age-related metabolic diseases in high-fat diet-fed mice. Aging Cell 21,e13539. https://doi.org/0.1111/acel. 13539.

54. Zhang, H., Alder, N.N., Wang, W., Szeto, H., Marcinek, D.J.,. and Rabinovitch, P.S. (2020). Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. eLife 9, e60827. hts://doi.org/10.7554/eLife.60827.

55. Goedeke, L, Peng, L, Montalvo-Romeral, V., Butrico, G.M., Dufour, S.,Zhang, X.-M., Perry, R.J, Cline, G.W, Kievit, P., Chng, K., et al. (2019). Controlled-release mitochondrial protonophore (CRMP)reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Sci. Transl. Med. 11, eaay0284. https://doi.org/10. 1126/scitranslmed.aay0284.

56. Reid Thompson, W., Homby, B., Manuel, R., Bradley, E., Laux, J., Carr,J., and Vernon, H.J. (2021). A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism. Genet. Med. 23, 471- -478. https://doi.org/10.1038/s41 436-020-01006-8.

57. Chee, C., Shannon, C.E, Bums, A, Selby, A.L, Wilkinson, D.. Smith, K., Greenhaff, P.L, and Stephens, F .B. (2021). Increasing skeletal muscle carnitine content in older individuals increases whole-body fat oxidation during moderate-intensity exercise. Aging Cell 20, e13303. https://doi. org/10.1111/acel.13303.

58. Baker, D.J., Childs, B.G., Durik, M., Wijers, M.E., Sieben, C.J, Zhong, J, Saltness, R.A., Jeganathan, K.B., Verzosa, G.C., Pezeshki, A., et al. (2016). Naturally occuring p1 6(nk4a)-positive cells shorten healthy lifespan. Nature 530, 184-189. htp://doi.org/10.1038/nature16932.

59. Xu, M., Pirtskhalava, T., Far, J.N., Weigand, B.M., Palmer, A.K., Weivoda, M.M., Inman, C.L, Ogrodnik, M.B., Hachfeld, C.M., Fraser, D.G., et al. (201 8). Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246-1256. https://doi.org/10.1038/s41591-018-0092-9.

60. Yousefzadeh, M.J., Zhu, Y., McGowan, S.J, Angelini, L, Fuhrmann- Stroissnigg, H., Xu, M., Ling, Y.Y, Melos, K.I., Pirtskhalava, T., Inman, C.L, et al. (2018). Fisetin is a senotherapeutic that extends health and lifespan. EBiomedicine 36, 18- -28. https://doi.org/10. 1016/j.ebiom. 2018.09.015.

61. Justice, J.N., Nambiar, A.M., Tchkonia, T.,LeBrasseur, N.K., Pascual, R., Hashmi, S.K., Prata, L, Masternak, M.M., Kritchevsky, S.B., Musi, N., et al. (2019). Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554- -563. https://oi.org/10.1016/j.ebiom.2018.12.052.

62. Hickson, L.J., L anghi Prata, L.G.P, Bobart, S.A., Evans, T.K., Giorgadze, N., Hashmi, S.K., Hermann, S.M., Jensen, M.D., Jia, Q., Jordan, K et al. (2019). Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446- -456. htts://doi.org/10. 1016/j.ebiom.2019.08.069.

63. Ocampo, A., Reddy, P., Martinez- Redondo, P., Platero-Luengo, A., Ha- tanaka, F, Hishida, T., Li, M., Lam, D., Kurita, M., Beyret, E., et al. (2016). In vivo amelioration of age- associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12. https://doi.org/10.1016/j.cell. 2016.11.052.

64. Browder, K.C, Reddy, P., Yamamoto, M., Haghani, A., Guillen, l.G.,Sahu, S., Wang, C., Luque, Y., Prieto, J., Shi, L, et al. (2022). In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat Aging 2, 243- -253. https://doi.org/10. 1038/s43587-022-00183-2.

65. Chen, Y, Littmann, F.F., Schoger, E., Scholer, H.R, Zelarayan, L.C., Kim, K.-P., Haigh, JJ, Kim, J, and Braun, T. (2021). Reversible reprogramming of cardiomyocytes to a fetal state drives heart regenera-
tion in mice. Science 373, 1537-1540. https://doi.org/10.1126/science.abg5159.

66. Hishida, T., Yamamoto, M., Hishida-Nozaki, Y., Shao, C, Huang, L, Wang, C., Shojima, K., Xue, Y., Hang, Y., Shokhirev, M., et al. (2022). In vivo partialcellular reprogramming enhances liver plasticity and regeneration. Cell Rep. 39, 110730. https://doi.org/10. 1016/j.celrep.2022.110730.

67. Rodriguez-Matellan, A, Alcazar, N., Hemandez, F, Serrano, M., and Avila, J. (2020). In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Rep.15, 1056-1066. https://doi.org/10.1016/j.stemcr.2020.09.010.

68. Gao, X., Wang, X., Xiong, W., and Chen, J. (2016). In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Sci. Rep. 6, 22490. https://doi.org/10.1038/ srep22490.

69. Doeser, M.C., Schioler, H., and Wu, G. (201 8). Reduction of fibrosis and scar formation by partial reprogramming in vivo. Stem Cells 36, 1216-1225. https://doi.org/10.1002/stem.2842.

70. Lu, Y., Brommer, B., Tian, ., Krishnan, A, Meer, M., Wang, C., Vera, D.L, Zeng, Q, Yu, D., Bonkowski, M.S., et al. (2020). Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124-129. https://doi.org/10. 1038/s41586-020-2975-4.

71. Mehdipour, M., Skinner, C., Wong, N., Lieb, M., Liu, C., Etienne, J., Kato, , C., Kiprov, D., Conboy, M.J, and Conboy, I.M. (2020). Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany, NY) 12, 8790-8819. https://doi.org/10. 18632/aging.103418.


72. Rebo, J., Mehdipour, M., Gathwala, R., Causey, K., Liu, Y., Conboy, M.J, and Conboy, I.M. (2016). A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun.7, 13363. https://doi.org/10. 1038/ncomms13363.


73. Castellano, J.M., Mosher, K.I., Abbey, R.J, McBride, A.A., James, M.L, Berdnik, D., Shen,J.C, Zou, B., Xie, X.S., Tingle, M, et al. (2017). Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488- 492. https://doi.org/10.1038/nature22067.

74. Ma, S., Wang, S., Ye, Y., Ren, J., Chen, R., Li, W., L, J., Zhao, L, Zhao,Q., Sun, G., et al. (2022). Heterochronic parabiosis induces stem cell revi-talization and systemic rejuvenation across aged tissues. Cell Stem Cell 29, 990 -1005.e10. https://doi.org/10.1016/j.stem.2022.04.017.


75. Palovics, R., Keller, A., Schaum, N, Tan, W., Fehlmann, T, Borja, M., Kern, F., Bonanno, L, Calcuttawala, K, Webber, J, et al. (2022). Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603, 309- -314. https://doi.org/1 0.1038/s41586-022-04461-2.


76. Ballak, D.B., Brunt, V.E., Sapinsley, Z.J., Ziemba, B.P., Richey, JJ., Zigler, M.C,Johnson, L.C, Gioscia-Ryan, R.A,Culp-Hill, R,Eisen- messer, E.Z, et al. (2020). Short-term interleukin-37 treatment improves vascular endothelial function, endurance exercise capacity, and wholebody glucose metabolism in old mice. Aging Cell 19, e13074. htps:// doi.org/10.1111/acel.13074.


77. Frohlich, J., and Vinciguerra, M. (2020). Candidate rejuvenating factor GDF11 and tisue fibrosis: friend or foe? GeroScience 42, 1475-1498. https://doi.org/10.1007/s1 1357 -020-00279-W.

78. Grunewald, M., Kumar, S, Sharife, H., Volinsky, E, Gileles-Hillel, A., Licht, T, Permyakova, A., Hinden, L, Azar, S., Friedmann, Y, et al. (2021). Counteracting age-related VEGF signaling insufficiency pro-
motes healthy aging and extends life span. Science 373, eabc8479. https://doi.org/10.1126/science.abc8479.


79. Sladitschek-Martens, H.L, Guamieri, A., Brumana, G., Zanconato, F., Battilana, G.. Xiccato, R.L, Panciera, T., Forcato, M., Bicciato, S., Guz- zardo, V., et al. (2022). YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 607, 790- 798. https://doi.org/10. 1038/s4 1586-022-04924-6.


80. Choi, H.R., Cho, K.A, Kang, H.T., Lee, J.B., Kaeberlein, M., Suh, Y, Chung, I.K., and Park, S.C. (2011). Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell 10, 148-157. https://doi.org/10.1111/j.1474-9726 .2010.00654.x.


81. Yang, S., Gigout, S., Molinaro, A., Naito-Matsui, Y., Hilton, S., Foscarin, S., Nieuwenhuis, B., Tan, C.L, Verhaagen,J., Pizzorusso, T., et al. (2021). Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing. Mol. Psychiatry 26, 5658- -5668. https://doi.org/10. 1038/ s41380-021-01208-9.


82. Desdin-Mico, G., Soto-Heredero, G., Aranda, J.F., Oller, J., Carrasco, E., Gabande-Rodriguez, E., Blanco, E.M., Alfranca, A.. Cusso, L, Desco, M, et al. (2020). T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368, 1371-1376. https://doi.org/ 10.1 126/science aax0860.


83. Sciorati, C., Gamberale, R., Monno, A., Citterio, L, Lanzani, C., De Lor- enzo, R., Ramirez, G.A., Esposito, A, Manunta, P., Manfredi, A.A., et al. (2020). Pharmacological blockade of TNFa. prevents sarcopenia and prolongs survival in aging mice. Aging (Albany, NY) 12, 23497- 23508. https://doi.org/10.1 8632/aging.202200.


84. Gocmez, s.s, Yazir, Y., Gacar, G., Demirtas Sahin, T., Arkan, S, Karson, A., and Utkan, T. (2020). Etanercept improves aging-induced cognitive deficits by reducing inflammation and vascular dysfunction in rats. Physiol. Behav. 224, 113019. https://doi.org/10. 1016/.physbeh.2020.113019.


85. Minhas, P.S, Latif-Hernandez, A., McReynolds, M.R., Durairaj, A.S., Wang, Q., Rubin, A., Joshi, A.U., He, J.Q.,. Gauba, E., Liu, L, et al. (2021). Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122- -128. https://doi.org/10. 1038/s41586-020- 03160-0. .


86. Marin-Aguilar, F., Lechuga-Vieco, A.V, Alcocer-Gomez, E., Castejon- Vega, B., Lucas, J., Garrido, C., Peralta-Garcia, A., Perez-Pulido, AJ, Varela-Lopez, A, Quiles, J.L, et al. (2020). NLRP3 inflammasome sup-pression improves longevity and prevents cardiac aging in male mice.Aging Cell 19, e13050. https://doi.og/1.1111/acel.13050.


87. Ridker, P.M., MacFadyen, J.G., Thuren, T., Everett, B.M., Libby, P., and Glynn, R.J; CANTOS Trial Group (2017). Effect of interleukin-1 β inhibition with canakinumab on incident lung cancer in patients with atheroscle-rosis: exploratory results from a randomised, double-blind, placebo- controlled trial. Lancet 390, 1833- -1842. https://doi.org/10.1016/S0140-6736(17)32247-X.


88. Barcena, C., Valdes-Mas, R., Mayoral, P, Garabaya, C.. Durand, s., Ro- driguez, F., Femandez-Garcia, M.T, Salazar, N, Nogacka, A.M., Garata-chea, N., et al. (2019). Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234-1242. https://doi.org/10. 1038/s41591-019-0504-5.


89. Lin, S.-W., Tsai, Y.-S., Chen, Y.-L., Wang, M.-F., Chen, C.-C., Lin, W.-H, and Fang, T.J. (2021). Lactobacillus plantarum GKM3 promotes longevity, memory retention, and reduces brain oxidation stress in
SAMP8 mice. Nutrients 13, 2860. https://doi.org/10.3390/nu1 3082860.


90. Boehme, M., Guzzetta, K.E, Bastiaanssen, T.F.S, van de Wouw, M., Moloney, G.M., Gual-Grau, A., Spichak, S., Olavarria-Ramirez, L, Fitz- gerald, P., Morllas, E., et al. (2021). Microbiota from young mice counter- acts selective age -associated behavioral deficits. Nat Aging 1, 666-676. https://doi.org/10.1038/s43587-021-00093-9.

91. Xu, L, Zhang, Q., Dou, X., Wang, Y.. Wang,J.. Zhou, Y., Liu, X., andL,J. (2022). Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice. J. Genet. Genomics. https://doi. org/10.1016/j.jgg.2022.05.006.

92. Stebegg, M., Silva-Cayetano, A., Innocentin, S., Jenkins, T.P., Cantacessi, C., Gilbert, C., and Linterman, M.A. (2019). Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nat. Commun. 10, 2443. https://doi.org/10.1038/s41467-019-10430-7.

93. Krishnan, S., Ding, Y., Saedi, N., Choi, M., Sridharan, G.V., Sher, D.H., Yarmush, M.L,, Alaniz, R.C,, Jayaraman, A, and Lee, K. (2018). Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 23, 1099- 1111. https://doi.org/10.1016/j.celrep.2018.03.109.

94. Cryan, JF., O'Riordan, K.J., Cowan, C.S.M., Sandhu, K.V, Bastiaanssen, T.F.S., Boehme, M., Codagnone, M.G., Cussotto, s., Fulling, C., Golubeva, A.V, et al. (201 9). The microbiota-gut-brain axis. Physiol. Rev.99, 1877-2013. https://doi.org/10.1152/physrev.00018.2018.

95. Depommier, C., Everard, A., Druart, C, Plovier, H., Van Hul, M., VieiraSilva, s., Falony, G., Raes, J., Maiter, D., Delzenne, N.M., et al. (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096-1103. https://doi.org/10. 1038/s41591-019-0495-2.

96. Sanchez-Contreras, M., and Kennedy, S.R. (2022). The complicated nature of somatic mtDNA mutations in aging. Front. Aging 2, 805126. https://doi.org/10.3389/iragi.2021.805126.


97. Greaves, L.C, Nooteboom, M., Elson, J.L, Tuppen, H.A.L, Taylor, G.A., Commane, D.M., Arasaradnam, R.P., Khrapko, K., Taylor, R.W., Kirkwood, T.B.L, et al. (2014). Clonal expansion of early to midlife mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing. PLoS Genet. 10, e1004620. https://doi.org/10.1371/ journal.pgen. 1004620.


98. Arbeithuber, B., Cremona, M.A., Hester, J., Barrett, A., Higgins, B., Anthony, K,Chiaromonte, F, Diaz, F.J., and Makova, K.D. (2022). Advanced age increases frequencies of de novo mitochondrial mutations in macaque oocytes and somatic tissues. Proc. Nati. Acad. Sci. USA 119. e2118740119. htp://doi.org/10.1073/pnas.2118740119.


99. Wang, Y., Guo, X., Ye, K., Orth, M., and Gu, Z. (2021). Accelerated expanion of pathogenic mitochondrial DNA heteroplasmies in Huntington's disease. Proc. Natl. Acad. Sci. USA 118. e20146101 18. https://doi.org/10.1073/pnas.2014610118.


100. Macken, W.L, Vandrovcova, J, Hanna, M.G., and Pitceathly, R.D.S. (2021). Applying genomic and transcriptomic advances to mitochondrial medicine. Nat. Rev. Neurol. 17, 215- -230. https://doi.org/10.1038/ s41582-021-00455-2.


101. Lujan, S.A, Longley, M.J., Humble, M.H., Lavender, C.A., Burkholder, A., Blakely, E.L, Alston, C.L, Gorman, G.S., Turnbull, D.M., McFarland, R., et al. (2020). Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol. 21, 248. https://doi.org/ 10.1186/s* 13059-020-02138-5.


102. Shin, J.-Y, and Worman, H.J. (2022). Molecular pathology of laminopathies. Annu. Rev. Pathol.17, 159- 180. https://doi.org/1 0.1146/annurev- pathol-042220-034240.


103. Lai, W.-F., and Wong, W.-T. (2020). Progress and trends in the development of therapies for Hutchinson-Gilford progeria syndrome. Aging Cell 19, e13175. https://doi.org/0.1111/acel.13175.


104. Dhillon, s. (2021). Lonafamib: first approval. Drugs 81, 283- -289. https://doi.org/10.1007/s40265-020-01464-z.


105. Santiago-Fernandez, O., Osorio, F.G., Quesada, V., Rodriguez, Basso, S., Maeso, D.. Rolas, L, Barkaway, A., Nourshargh, S., Folgueras, A.R., et al. (2019). Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat. Med. 25, 423- -426. 8-0338-6.

106. Koblan, L.W., Erdos, M.R., Wilson, C., Cabral, W.A., Levy, J.M., Xiong, Z.M., Tavarez, U.L, Davison, L.M., Gete, Y.G., Mao, X., et al. (2021). In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 589, 608- 614. https://doi.org/10.1038/s41 586-020-03086-7


107. Blackburn, E.H., Epel, E.S., and Lin, J. (2015). Human telomere biology:A contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193-1198. hts://doi.org/10.1126/science. aab3389.


108. Chakravarti, D., LaBella, K.A., and DePinho, R.A. (2021). Telomeres: history, health, and hallmarks of aging. Cell 184, 306- 322. https://doi.org/ 10.101/.cll.2020.12.028.


109. Blasco, M.A. (2005). Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6, 61 1-622. hts://doi.org/10. 1038/rg1656.


110. Lopez-Otin, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L, and Kroemer, G. (2023). Meta-hallmarks of aging and cancer. Cell Metab. 35. https:// doi.org/10.1016/j.cmet.22.11.001.

111. Alder, J.K, andAmanios, M. (2022). Telomere-mediated lung disease. Physiol. Rev. 102, 1703- -1720. htps://oi.org/10.1152/physrev.00046.2021.


112. Whittemore, K., Vera, E., Martinez-Nevado, E., Sanpera, C., and Blasco, M.A. (201 9). Telomere shortening rate predicts species life span. Proc. Natl. Acad. Sci. USA 116, 15122- 15127. https://doi.org/10.1073/pnas. 1902452116.


113. Lim, C.J, and Cech, T.R. (202 1). Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat. Rev. Mol. Cell Biol. 22, 283- -298. https://doi.org/10.1038/s41 580-021- 00328-y.


114. Martinez, P., and Blasco, M.A. (201 1). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer 11, 161-176. https://doi.org/10. 1038/nrc3025.


115. Rossiello, F, Jurk, D., Passos, J.F., and d'Adda di Fagagna, F. (2022). Telomere dysfunction in ageing and age-related diseases. Nat. Cel Biol. 24, 135-147. https://doi.org/10.1038/s41556-022-00842-x.


116. Saraswati, S., Martinez, P., Grana-Castro, 0., and Blasco, M.A. (2021). Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. Nat. Aging 1, 269 283. https://doi.org/10.1038/s43587-021- 00040-8.


117. Seale, K., Horvath, s., Teschendorf, A., Eynon, N., and Voisin, s. (2022). Making sense of the ageing methylome. Nat. Rev. Genet. 23, 585- -605. https://doi.org/10.1038/s41576-022-00477-6.


118. Bejaoui, Y, Razzaq, A., Yousri, N.A., Oshima, J,Megarbane, A., Qannan, A., Potabattula, R., Alam, T., Martin, G.M., Hom, H.F, et al. (2022). DNA methylation signatures in Blood DNA of Hutchinson-
Gilford progeria syndrome. Aging Cell 21, e13555. htps:/:oi.org/10. 1111/acel.13555.

 

119. Horvath, S., and Raj, K. (201 8). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371-384. https://doi.org/10.1038/s41576-018-0004-3.


120. Lu, Y.-X, Regan, J.C., EBer, J., Drews, L.F, Weinseis, T., Stinn, J., Hahn, 0., Miller, R.A., Gronke, s., and Partridge, L. (2021). A TORC1-histone axis regulates chromatin organisation and non-canonical induction of autophagy to ameliorate ageing. eLife 10, e62233. hts://oi.org/10. 7554/eLife.62233.


121. Oh, E.S., and Petronis, A. (2021). Origins of human disease: the chrono-epigenetic perspective. Nat. Rev. Genet. 22, 533- -546. https://doi.org/10. 1038/s41576-021-00348-6.


122. Blasco, M.A. (2007). The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299 -309. https://doi.org/10.1 038/nrg2047.


123. Brown, K., Xie, s., Qiu, x., Mohrin, M., Shin, J.. Liu, Y., Zhang, D.,. Scadden, D.T., and Chen, D. (2013). SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319- -327. hts://oi.org/10.1016/j.celrep.2013. 01 .005.


124. Mostoslavsky, R., Chua, K.F., Lombard, D.B.. Pang, W.W., Fischer, M.R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S., Murphy, M.M., et al. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329. https://doi.org/10.1016/j.cell. 2005.11.044.

125. Chang, A.R., Ferrer, C.M., and Mostoslavsky, R. (2020). SIRT6, a mammalian deacylase with multitasking abilities. Physiol. Rev. 100 145-169. https://doi.org/10.11 52/physrev.00030.2018.


126. Mohrin, M., Shin, J., Liu, Y., Brown, K., Luo, H., Xi, Y., Haynes, C.M., and Chen, D. (2015). Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347, 1374-1377. https://doi.org/10.1126/science.aaa2361.


127. Bonkowski, M.S., and Sinclair, D.A. (201 6). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679- -690. https://doi.org/10.1038/nrm.2016.93.


128. Swer, P.B.,. and Shama, R. (2021). ATP-dependent chromatin remodelers in ageing and age-related disorders. Biogerontology 22, 1-17. https://doi.org/10.1007/s10522-020-09899-3.


129. Larson, K., Yan, S.-J., Tsurumi, A., Liu, J, Zhou, J., Gaur, K., Guo, D Eickbush, T.H, and Li, W.X. (2012). Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet. 8, e1002473. https://doi.org/10. 1371/journal.pgen.1002473.


130. Napoletano, F., Ferrari Bravo, G.,Voto, l.A.P., Santin, A., Celora, L, Campaner, E, Dezi, C., Bertossi, A., Valentino, E., Santorsola, M., et al. (2021). The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress. Cell Rep.36, 109694. https://doi.org/10. 1016/j.celrep.2021. 109694.


131. Jusic, A., Thomas, P.B., Wettinger, S.B., Dogan, s., Farrugia, R., Gaetano, C., Tuna, B.G., Pinet, F., Robinson, E.L, Tual-Chalot, S., et al. (2022). Noncoding RNAs in age-related cardiovascular diseases. Ageing Res. Rev. 77, 101610. https://doi.org/10. 1016/.arr.2022.101610.


132. Weigelt, C.M., Sehgal, R, Tain, L.S., Cheng, J., EBer, J., Pahl, A, Dieterich, C., Gronke, S., and Partridge, L. (2020). An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol. Cell 79, 268- -279.e5. https://doi.org/10.101 6/j.molcel.2020.06.011.


133. Ponting, C.P., and Haety, W. (2022). Genome-wide analysis of human long noncoding RNAs: a provocative review. Annu. Rev. Genomics Hum. Genet. 23, 153-172. https://doi.org/10.1 146/annurev-genom-112921-123710.


134. Gorbunova, V., Seluanov, A., Mita, P., McKerrow, W., Fenyo, D., Boeke, J.D., Linker, S.B., Gage, F.H., Kreiling, J.A., Petrashen, A.P., et al. (2021). The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43- -53. hts://doi.org/10. 1038/s41586-021-03542-y.


135. Della Valle, F., Reddy, P., Yamamoto, M., Liu, P., Saera-Vila, A., Bensaddek, D., Zhang, H., Prieto Martinez, J., Abassi, L., Celi, M., et al. (2022). LINE-1 RNA causes heterochromatin erosion and is a target for amelio- ration of senescent phenotypes in progeroid syndromes. Sci. Transl. Med.14, eabl6057. https://doi.org/10.1126/scitranslmed. abl6057.


136. De Cecco, M., lto, T., Petrashen, AP., Elias, A.E, Skvir, N.J., Criscione, S.W., Caligiana, A., Broccli, G, Adney, E.M., Boeke, J.D., et al. (2019). L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73- 78. https://doi.org/10. 1038/s41586-018-0784-9.


137. Simon, M., Yang, J., Gigas, J., Earley, E.J., Hillpot, E., Zhang, L, Zagorulya, M., Tombline, G., Gilbert, M., Yuen, S.L, et al. (2022). Arare human centenarian variant of SIRT6 enhances genome stability and interaction vith Lamin A. EMBO J. 41, e110393. hts://doi.org/10.15252/embj. 2021110393.


138. Hemando-Herraez, I, Evano, B., Stubbs, T., Commere, P.H., Jan Bonder, M., Clark, S., Andrews, S., Tajbakhsh, S., and Reik, W. (2019). Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361. https://doi. org/10.1038/s41. 467-019-12293-4.


139. Bhadra, M., Howell, P., Dutta, S, Heintz, C., and Mair, W.B. (2020). Alter- doi.org/10.1007/s00439-019-02094-6.

140. ljomone, O.M, ljomone, 0.K., lroegbu, J.D., Ifenatuoha, C.W., Olung, N.F., and Aschner, M. (2020). Epigenetic influence of environmentally neurotoxic metals. Neurotoxicology 81, 51-65. https://doi.org/10.1016/ j.neuro.2020.08.005.


141. Tabula Muris Consortium (2020). A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590- 595. https://doi. org/10. 1038/s41586-020-2496-1.


142. Hipp, M.S., Kasturi, P., and Hartl, F.U. (2019). The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421- -435. https://doi.org/10. 1038/s41580-019-0101-y.


143. Martinez-Miguel, V.E., Lujan, C., Espie-Callet, T., Martinez-Martinez, D Moore, S., Backes, C., Gonzalez, S., Galimov, E.R., Brown, A.E.X, Hali, M., et al. (2021). Increased fidelity of protein synthesis extends lifespan. Cell Metab. 33, 2288 -2300.e12. htps://doi.org/10.101 6/j.cmet.2021. 08.017.


144. Shcherbakov, D.,. Nigni, M., Akbergenov, R., Brilkova, M., Mantovani, M.. Petit, P.L, Grimm, A., Karol, AA., Teo, Y., Sanchon, A.C, et al. (2022). Premature aging in mice with error-prone protein synthesis. Sci. Adv. 8, eabl9051. https://doi.org/10.1126/sciadv.abl9051.


145. Gerashchenko, M.V., Peterf, Z., Yim, S.H, and Gladyshev, V.N. (2021). Translation elongation rate varies among organs and decreases with age. Nucleic Acids Res. 49, e9. https://doi.org/10.1093/nar/gkaa1 103.


146. Lopez-Otin, C., and Kroemer, G. (2021). Hallmarks of health. Cell 184, 33-63. https://doi.org/10.1016/.cell.2020.11 .034.


147. Hetz, C., Zhang, K., and Kaufman, R.J. (2020). Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421-438. https://doi.org/10. 1038/s41580-020-0250-z.


148. Kelmer Sacramento, E., Kirkpatrick, J.M., Mazzetto, M., Baumgart, M Bartolome, A., Di Sanzo, S., Caterino, C, Sanguanini, M., Papaevgeniou, N., Lefaki, M., et al. (2020). Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Syst. Biol. 16, e9596. https://doi.org/10.15252/msb.20209596.


149. Yang, L, Ma, Z., Wang, H, Niu, K., Cao, Y.. Sun, L, Geng, Y., Yang, Gao, F., Chen, Z., et al. (201 9). Ubiquitylome study identifies increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. Nat. Commun. 10, 2191. hts://doi.org/10. 1038/s41467-019-10136-w.


150. Kaushik, S., and Cuervo, A.M. (201 8). The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365 -381. https://doi.org/10.1038/s41580-018-0001-6.


151. Rodriguez-Navarro, JA., Kaushik, S., Koga, H, Dall'Ami, C., Shui, G..Wenk, M.R., Di Paolo, G., and Cuervo, A.M. (201 2). Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 109, E705-E7 14. htp://doi.org/10. 1073/pnas.1113036109.


152. Levine, B., and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11-42. https://doi.org/10.1016/ jcell.2018.09.048.


153. Klionsky, D.J, Petroni, G., Amaravadi, R.K, Baehrecke, E.H., Ballabio, A., Boya, P, Bravo-San Pedro, J.M., Cadwell, K., Cecconi, F., Choi, A.M.K., et al. (202 1). Autophagy in major human diseases. EMBO J. 40, e108863. https://doi.org/10. 15252/embj.2021108863.


154. Tsakiri, E.N, liaki, K.K., Hohn, A., Grimm, S.. Papassideri, l.S., Grune, T., and Trougakos, I.P. (2013). Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic. Biol. Med. 65, 1155-1 163. https://doi.org/10. 1016/j.freeradbiomed.2013.08.186.


155. Bourdenx, M., Martin-Segura, A., Scrivo, A., Rodriguez-Navarro, J.A., Kaushik, S., Tasset, I., Diaz, A., Storm, N.J, Xin, Q., Juste, Y.R., et al. (2021). Chaperone -mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696- 2714.e25. https://doi. org/10.1016.el.202 1.03.048.


156. Munkacsy, E., Chocron, E.S., Quintanilla, L, Gendron, C.M., Pletcher, S.D., and Pickering, A.M. (2019). Neuronal-specific proteasome augmentation via Prosβ5 overexpression extends lifespan and reduces age-related cognitive decline. Aging Cell 18, e13005. https://doi.org/10. 1111/acel.13005.

157. Derisbourg, M.J, Hartman, M.D., and Denzel, M.S. (2021). Perspective: modulating the integrated stress response to slow aging and ameliorate age-related pathology. Nat Aging 1, 760-768. htp://doi.org/10.1038/ s43587-021-00112-9.


158. Marciniak, S.J, Chambers, J.E., and Ron, D. (2022). Pharmacological targeting of endoplasmic reticulum stress in disease. Nat. Rev. Drug Discov.21, 115-140. https://doi.org/10. 1038/s41573-021-00320-3.


159. Shen, Z., Hinson, A, Miller, R.A., and Garcia, G.G. (2021). Cap-independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17.-estradiol. Aging Cell 20, e13345. https://doi.org/ 10.111 1/acel.13345.


160. Kuo, C.-T, You, G.-T., Jian, Y.-J, Chen, T.-S., Siao, Y.-C., Hsu, A.-L, and Ching, T.-T. (2020). AMPK-mediated formation of stress granules is required for dietary restriction-induced longevity in Caenorhabditis elegans. Aging Cell 19, e13157. https://doi.org/10.1111/acel.13157.

161. Humeau, J., Leduc, M., Cerrato, G, Loos, F., Kepp, 0., and Kroemer, G. (2020). Phosphorylation of eukaryotic initiation factor-2a. (elF2x) in autophagy. Cell Death Dis. 11, 433. https://doi.org/10.1038/s41419-0202642-6.

162. Halliday, M., Hughes, D., and Mallucci, G.R. (2017). Fine-tuning PERK signaling for neuroprotection. J. Neurochem. 142, 812 -826. htp://oi. org/10.1111/inc.14112.

163. Galluzzi, L, and Green, D.R. (2019). Autophagy-independent functions of the autophagy machinery. Cell 177, 1682-1699. https://doi.org/10.1016/j.cll.2019.05.026.

164. Nicolas- Avila, J.A, Lechuga-Vieco, A.V., Esteban-Martinez, L, Sanchez-Diaz, M., Diaz-Garcia, E., Santiago, D.J, Rubio-Ponce, A., Li, J.L, Balachander, A., Quintana, JA.,. et al. (2020). A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94-109.e23. https://doi.org/10.101 6/j.cl.2020.08.031.

165. Lipinski, M.M., Zheng, B., Lu, T., Yan, Z., Py, B.F., Ng, A, Xavier, R.J., Li, C., Yankner, B.A., Scherer, C.R., et al. (2010). Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc. Nat. Acad. Sci. USA 107, 14164-14169. https://doi.org/10.1073/pnas. 1009485107.

166. Raz, Y., Guerrero-Ros, I, Maier, A., Slagboom, P .E., Atzmon, G., Barilai, N., and Macian, F. (2017). Activation-induced autophagy is preserved in CD4+ T-cells in familial longevity. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1201-1206. https://doi.org/10. 1093/gerona/glx020.

167. Zhang, H., Alsaleh, G., Feltham, J., Sun, Y., Napolitano, G., Riffelmacher, T., Charles, P.. Frau, L, Hublitz, P., Yu, Z.. et al. (2019). Polyamines control elF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell 76, 110-125.e9. https://doi.org/10.1016/j. molcel.2019.08.005.

168. AIsaleh, G., Panse, 1., Swadling, L, Zhang, H., Richter, F.C., Meyer, A., Lord, J., Barnes, E, Klenerman, P., Green, C., et al. (2020). Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. eLife 9, e57950. https://doi.org/ 10.7554/eLife.57950.

169. Deretic, V., and Kroemer, G. (2022). Autophagy in metabolism and quality control: opposing, complementary or interlinked functions? Autophagy 18, 283-292. https://doi.org/10.1080/15548627.2021.1933742.

170. Cassidy, L.D., Young, A.R.J., Young, C.N.J, Soilleux, E.J., Fielder, E., Weigand, B.M., Lagnado, A, Brais, R., Ktistakis, N.T, Wiggins, K.A. et al. (2020). Temporal inhibition of autophagy reveals segmental reversal of ageing with increased cancer risk. Nat. Commun.11, 307. htts://doi. org/10. 1038/s41467-019-14187-x.

171. Xu Y, Wan W. Acetylation in the regulation of autophagy. Autophagy 2022, Published online April 18, 2022:1-18. https://doi.org/10. 1080/ 15548627 .2022.2062112.

172. Pietrocola, F., Pol, J., Vaccelli, E., Rao, S, Enot, D.P., Baracco, E.E., Levesque, S, Castoldi, F., Jacquelot, N., Yamazaki, T., et al. (2016). Caloric restriction mimetics enhance anticancer immunosureillance.
Cancer Cell 30, 147-160. https://doi.org/10. 1016/.ccell.2016.05.016.

173. Liang, Y., Piao, C., Beuschel, C.B., Toppe, D., Kolliara, L, Bogdanow, B., Maglione, M., Litzkendor, J, See, J.C.K., Huang, S, et al. (2021). elF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 35, 108941. https://doi.org/10.1016/j.celrep .2021.108941.

174. Puleston, D.J, Baixauli, F., Sanin, D.E, Edwards-Hicks, J, Vlla, M., Kabat, A.M., Kaminski, M.M., Stanckzak, M., Weiss, H.J., Grzes, K.M., et al. (2021). Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186 -4202.e20. https://doi.org/10.1016/.cell. 2021.06.007.

175. Gobert, A.P., L atour, Y.L, Asim, M., Barry, D.P., Allaman, M.M., Finley,J.L, Smith, T.M., McNamara, K.M., Singh, K., Sierra, J.C., et al. (2022). Protectiverole ofspermidineincolitis and colon carcinogenesis. Gastroenterology 162, 813- 827.e8. htps://doi.org/10.1053/j.gastro.21.11.005.

176. Katsyuba, E, Romani, M., Hofer, D., and Auwerx, J. (2020). NAD* homeostasis in health and disease. Nat. Metab. 2, 9 -31. https://doi.org/ 10.1038/s42255-019-0161-5.

177. D'Amico, D., Andreux, P.A., Valdes, P., Singh, A., Rinsch, C., and Auwerx, J. (2021). Impact of the natural compound urolithin a on health, disease, and aging. Trends Mol. Med.27, 687 -699. https://doi.org/10.1016/ j.molmed.2021.04.009.

178. Slack, C., Alic, N., Foley, A., Cabecinha, M., Hoddinott, M.P., and Partridge, L. (2015). The Ras-Erk- ETS -signaling pathway is a drug target for longevity. Cell 162, 72- -83. htts://doi.org/10.1016/.cell.2015.06.023.

179. Singh, P.P.. Demmitt, B.A., Nath, R.D, and Brunet, A. (2019). The genetics of aging: A vertebrate perspective. Cell 177, 200- -220. https:// doi.org/0.1016/j.cll.2019.02.038.

180. Ji, J.S., Liu, L, Shu, C., Yan, L.L, and Zeng, Y. (2021). Sex difference and interaction of SIRT1 and FOXO3 candidate longevity genes on life expectancy: a 10-year prospective longitudinal cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 77, glab378. https://doi.org/1 0.1093/gerona/ glab378.

181. Kabacik, S., Lowe, D., Fransen, L, Leonard, M., Ang, S.-L, Whiteman, C., Corsi, S., Cohen, H, Felton, s., Bali, R., et al. (2022). The relationship between epigenetic age and the hallmarks of aging in human cells. Nat Aging 2, 484- 493. https://doi.org/10.1038/s43587-022-00220-0.


182. Amorim, J.A, Coppotelli, G., Rolo, A.P., Palmeira, C.M., Ross, J.M., and Sinclair, D.A. (2022). Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243- -258. https:// doi.org/1 0.1038/s41574-021-00626-7.


183. Orthofer, M., Valsesia, A., Magi, R, Wang, Q.-P., Kaczanowska, J., Kozieradzki, I, Leopoldi, A, Cikes, D., Zopf, L.M., Tretiakov, E.O., et al. (2020). Identification of ALK in thinness. Cell 181, 1246-1262.e22.
https://doi.org/10.1016/j.cell.2020.04.034.


184. Ahmed, M., Kaur, N., Cheng, Q., Shanabrough, M., Tretiakov, E.0., Harkany, T., Horvath, T.L, and Schlessinger, J. (2022). A hypothalamic pathway for Augmentor a-controlled body weight regulation. Proc. Nat. Acad. Sci. USA 119. e22004761 19. https://doi.org/10.1073/pnas. 2200476119.


185. Partridge, L, Fuentealba, M., and Kennedy, B.K. (2020). The quest to slow ageing through drug discovery. Nat. Rev. Drug Discov. 19, 513- 532. https://doi.org/10. 1038/s41573-020-0067-7.


186. Mannick, J.B., Teo, G., Bernardo, P., Quinn, D., Russell, K., Klickstein, L, Marshall, W., and Shergill, S. (2021). Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev. 2, e250-e262. https://doi.org/10.1016/S2666-7568(2100062-3.


187. Mannick, J.B., Morris, M., Hockey, H.-U.P., Roma, G, Beibel, M., Kulmatycki, K., Watkins, M., Shavlakadze, T., Zhou, W., Quinn, D., et al. (2018). TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl. Med. 10, eaaq1564. https://doi.org/10.1126/sci translmed.aaq1564.

188. Abdellatif, M., Trummer-Herbst, V., Martin Heberle, A., Humnig, A., Pendl, T., Durand, S., Cerrato, G., Hofer, S.J,, Islam, M., Voghuber, J., et al. (2022). Fine-tuning cardiac insulin/insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation 145 1853- -1866. https://doi.org/10.1161/CIRCUL ATIONAHA.122.059863.


189. Wu, Q., Tian, A.-L, Li, B., Leduc, M., Forveille, S., Hamley, P., Galloway, W., Xie, W., Liu, P., Zhao, L, et al. (2021). IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J. Immunother. Cancer 9, e002722. https://doi.org/10. 1136/jitc-2021-002722.


190. Zhang, W.B., Aleksic, S., Gao, T., Weiss, E.F., Demetriou, E., Verghese, J., Holtzer, R., Barilai, N, and Milman, S. (2020). Insulin-like growth factor-1 and IGF binding proteins predict all-cause mortality and morbidity in older adults. Cells 9,E1368. htts://doi.org/10.3390/ cells9061368.


191. Zhang, W.B., Ye, K, Barzilai, N., and Milman, S. (2021). The antagonistic pleiotropy of insulin-like growth factor 1. Aging Cell 20, e13443. https:// doi.org/10.1111/acel.13443.


192. Sebastiani, P., Federico, A., Morris, M., Gurinovich, A, Tanaka, T., Chandler, K.B., Andersen, S.L, Denis, G., Costello, C.E., Ferrucci, L, et al. (2021). Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell 20, e13290. https://doi.org/10.111 1/acel.13290.


193. Mattison, J.A., Colman, R.J, Beasley, T.M., Allison, D.B., Kemnitz, J.W, Roth, G.S., Ingram, D.K., Weindruch, R., de Cabo, R., and Anderson, R.M. (2017). Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun.8, 14063. https://doi.org/10.1038/ncomms14063.


194. Solon-Biet, S.M., McMahon, A.C., Ballard, J.W.O., Ruohonen, K., Wu,L.E, Cogger, V.C., Warren, A, Huang, X., Pichaud, N., Melvin, R.G., et al. (2020). The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 31, 654. https://doi.org/10.1016/j.cmet.2020.01.010.


195. Pak, H.H., Haws, S.A., Green, C.L, Koller, M., Lavarias, M.T., Richardson, N.E., Yang, S.E, Dumas, S.N, Sonsalla, M., Bray, L, et al. (2021). Fasting drives the metabolic, molecular and geroprotective effects of a calorie-restricted diet in mice. Nat. Metab. 3, 1327-1341. https://doi. org/10. 1038/s42255-021-00466-9.


196. Mitchel, S.J, Bemier, M., Mattison, J.A, Aon, M.A., Kaiser, T.A, Anson, R.M., lkeno, Y., Anderson, R.M., Ingram, D.K., and de Cabo, R. (2019). Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221- -228.e3. https://doi. org/10.1016/j.cmet.2018.08.011.


197. Mithell, S.J, Madrigal-Matute, J, Scheibye-Knudsen, M., Fang, E. Aon, M., Gonzalez-Reyes, J.A., Cortassa, S, Kaushik, S, Gonzalez- Freire, M., Patel, B.. et al. (2016). Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab.23, 1093-1112. https://doi.org/ 10.1016/.cmet.2016.05.027.


198. Mattson, M.P., Longo, V.D., and Harvie, M. (2017). Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46 -58. https://doi.org/10.101 6/.arr.2016.10.005.


199. Stekovic, S., Hofer, S.J., Tripolt, N., Aon, M.A., Royer, P., Pein, L., Stadler, J.T, Pendl, T., Prietl, B., Url, J., et al. (2019). Alternate day fasting improves physiological and molecular markers of aging in healthy, nonobese humans. Cell Metab. 30, 462- -476.e6. https://doi.org/10.1016/j. cmet.2019.07.016.


200. Ulgherait, M., Midoun, A.M., Park, S.J, Gatto, J.A, Tener, S.J., Siewert, J., Klickstein, N., Canman, J.C.,. Ja, W.W., and Shirasu-Hiza, M. (2021). Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353-358. htps://doi.org/10. 1038/s41 586-021 -03934-0.


201. Anisimov, V.N., Zabezhinski, M.A, Popovich, I.G., Piskunova, T.S., Semenchenko, A.V, Tyndyk, M.L, Yurova, M.N., Rosenfeld, S.V., and Blagosklonny, M.V. (2011). Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236. https://doi.org/10.4161/cc.10.24.18486.

202. Salvadori, G., Zanardi, F., lannelli, F., Lobefaro, R., Vernieni, C, and Longo, V.D. (202 1). Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 33, 2247- -2259.e6. https://doi.org/10.1016/j.cmet.2021.10.008.

203. McCarthy, C.G., Chakraborty, S., Singh, G., Yeoh, B.S., Schrecken- berger, Z.J, Singh, A., Mell, B., Bearss, N.R., Yang, T., Cheng, X., et al. (2021). Ketone body β-hydroxybutyrate is an autophagy-dependent vasodilator. JCI Insight 6, e149037. https://doi.org/10.1172/jci.insight. 149037.


204. Youm, Y.H., Nguyen, K.Y, Grant, R.W., Goldberg, E.L, Bodogai, M., Kim, D., D'Agostino, D., Planavsky, N, Lupfer, C., Kanneganti, T.D., et al. (201 5). The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263-269. https://doi.org/10. 1038/nm 3804.


205. Rattray, N.J.W., Trivedi, D.K., Xu, Y., Chandola, T, Johnson, C.H., Marshall, A.D., Mekli, K, Rattray, z., Tampubolon, G., Vanhoutte, B., et al. (2019). Metabolic dysregulation invitamin E and carnitine shuttle energy mechanisms associate with human frailty. Nat. Commun.10, 5027. https://doi.org/10.1038/s41467-019-12716-2.


206. Lionaki, E., Gkikas, I.. Daskalaki, I., loannidi, M.-K., Klapa, M.I, and Tavernarakis, N. (2022). Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nat. Commun. 13, 651. https://doi.org/10.1038/s41467 -022-28272-1.


207. Owusu-Ansah, E., Song, W., and Perrimon, N. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699-712. https://doi.org/10.1016/.cell.2013.09.021.


208. Pietrocola, F., Galluzzi, L, Bravo-San Pedro, J.M., Madeo, F., and Kroemer, G. (2015). Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805 -821. https://doi.org/10.1016/j.cmet. 2015.05.014.


209. Youle, R.J. (2019). Mitochondria-Striking a balance between host and endosymbiont. Science 365, eaaw9855. htts://doi.org/10.1126/science .aaw9855.


210. Kulkarni, A.S., Gubbi, S., and Barzilai, N. (2020). Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15 -30. hts://oi.org/ 10.1016/j.cmet.2020.04.001.


211. Zhou, B., Kreuzer, J., Kumsta, C., Wu, L, Kamer, K.J., Cedilo, L, Zhang, Y., Li, S., Kacergis, M.C, Webster, C.M., et al. (2019). Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell 177, 299 -314.e16. https://doi.org/10.1016/.cell.2019.02.013.

212. Zinovkin, R.A., and Zamyatnin, A.A. (2019). Mitochondria-targeted drugs. Curr. Mol. Pharmacol. 12, 202- -214. https://doi.org/10.2174/1874467212 666181127151059.


213. Yen, K., Mehta, H.H., Kim, S.J., Lue, Y., Hoang, J., Guerrero, N., Port, J, Bi, Q., Navarrete, G., Brandhorst, S., et al. (2020). The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany, NY) 12, 11185-1 1199. htp://doi.org/10.1 8632/aging.103534.


214. Lee, C., Wan, J., Miyazaki, B., Fang, Y., Guevara-Agirre, J, Yen, K., Longo, V., Bartke, A., and Cohen, P. (2014). IGF-| regulates the agedependent signaling peptide humanin. Aging Cell 13, 958- -961. https:// doi.org/10.1111/acel.12243.


215. Reynolds, J.C., Lai, R.W., Woodhead, J.S.T., Joly, J.H,, Mitchell, C.J, Cameron-Smith, D., Lu, R, Cohen, P., Graham, N.A, Benayoun, B.A., et al. (2021). MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat. Commun.12, 470. https://doi.org/10.1038/s41467 -020-20790-0.


216. Gorgoulis, V., Adams, P.D, Alimonti, A., Benett, D.C., Bischof, O. Bishop, C, Campisi, J, Collado, M., Evangelou, K., Ferbeyre, G.. et al. (2019). Cellular senescence: defining a path forward. Cell 179, 813-
827. htp://doi.org/10. 1016/.cell.2019.10.005.

217. Tuttle, C.S.L, Waijer, M.E.C, Slee-Valentijn, M.S., Stjnen, T., Westen-dorp, R., and Maier, A.B. (2020). Cellular senescence and chronological  age in various human tissues: A systematic review and meta-analysis. Aging Cell 19, e13083. https://doi.org/10.1 111/acel.13083.


218. Xu, P.. Wang, M., Song, W.-M., Wang, Q., Yuan, G.-C., Sudmant, P.H., Zare, H., Tu, Z., Orr, M.E, and Zhang, B. (2022). The landscape of human tissue and cell type specific expression and co-regulation of senescence genes. Mol. Neurodegener. 17, 5. https://doi.org/10.1186/s13024-021- 00507-7.


219. Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G., and Nattel, S. (2022). The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat. Rev. Cardiol. 19, 250- -264. https://doi.org/10. 1038/s41569-021-00624-2.


220. Serrano, M., and Munoz-Espin, D. (2022). Cellular Senescence in Disease (Elsevier) https://doi.org/10. 1016/C2019-0-04661-4.


221. Robbins, P.D, Jurk, D., Khosla, S, Kirkland, J.L, LeBrasseur, N.K.,Miller, J.D., Passos, J.F., Pignolo, R.J, Tchkonia, T., and Niedemhofer, L.J. (2021). Senolytic drugs: reducing senescent cell viability to extend health span. Annu. Rev. Pharmacol. Toxicol. 61, 779- -803. https://doi. org/10.1146/annurev-pharmtox-050120-105018. .


222. Wissler Gerdes, E.O., Misra, A, Netto, J.M.E, Tchkonia, T.. and Kirkland, J.L. (2021). Strategies for late phase preclinical and early clinical trials of senolytics. Mech. Ageing Dev. 200, 111591. htp://doi.org/10.1016/j. mad.2021.111591.


223. Birch, J., and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev.34, 1565-1576. https://doi.org/10.1101/gad. 3431. 29.120.


224. Sati, S., Bonev, B., Szabo, Q.,. Jost, D., Bensadoun, P., Serra, F., Loubiere, V., Papadopoulos, G.L, Rivera-Mulia, J.-C., Fritsch, L, et al. (2020). 4D genome rewiring during oncogene-induced and replicative senescence. Mol. Cell 78, 522- -538 .e9. https://doi.org/10. 1016/j.molcel.2020.03.007.


225. Chakradeo, S., Elmore, L.W., and Gewirtz, D.A. (2016). Is senescence reversible? Curr. Drug Targets 17, 460 -466. htp:/:/oi.org/10.2174/ 13894501 166661508251 13500.


226. Rhinn, M., Ritschka, B., and Keyes, W.M. (201 9). Cellular senescence in development, regeneration and disease. Development 146, dev151837. htts://doi.org/10. 1242/dev.151837.

27. Young, A.R.J, Cassidy, L.D., and Narita, M. (2021). Autophagy and senescence, converging roles in pathophysiology as seen through mouse models. Adv. Cancer Res. 150, 1 13-145. https://doi.org/10.
1016/bs.acr.2021.02.001.


228. Faget, D.V., Ren, Q., and Stewart, S.A (2019). Unmasking senescence:context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19,439-453. htps:/oi.org/10.1038/41 568-019-0156-2.


229. Meyer, K., Lopez-Dominguez, JA., Maus, M., Kovatcheva, M., and Serrano, M. (2022). Senescence as a therapeutic target: current state and future challenges. In Cellular Senescence in Disease, M. Serrano and D. Munoz- Espin, eds. (Academic Press), pp. 425- 442. Chapter 16. https://doi.org/10.101 6/B978-0-12-822514-1.00014-6.


230. Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A.C., Ding, H., Giorgadze, N., Palmer, A.K., lkeno, Y, Hubbard, G.B.,. Lenburg, M., et al. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644- 658. htps://oi.org/10.111/acel.12344.


231. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H.M., Ling, Y.Y, Stout, M.B., Pirtskhalava, T., Giorgadze, N., Johnson, K.0., Giles, C.B., et al. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428- -435. https:// doi.org/10.111 1/acel.12445.


232. He, Y., Zhang, X., Chang, J, Kim, H.-N., Zhang, P., Wang, Y., Khan, S., Liu, X, Zhang, X, Lv, D., et al. (2020). Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improveits senolytic activity. Nat. Commun. 11, 1996. https://doi.org/10.1038/ s41467-020-15838-0.

233. Triana-Martinez, F., Picallos-Rabina, P., Da Silva-Alvarez, S., Pietrocola, F., Lanos, S., Rodilla, V., Soprano, E., Pedrosa, P., Ferreiros, A., Barradas, M., et al. (2019). Identification and characterization of cardiac glyco- sides as senolytic compounds. Nat. Commun.10, 4731. htp://doi.org/ 10.1038/s4 1467-019-12888-x.

234. Johmura, Y., Yamanaka, T., Omori, S., Wang, T.W., Sugiura, Y., Matsumoto, M., Suzuki, N., Kumamoto, S., Yamaguchi, K., Hatakeyama, S, et al. (2021). Senolysis by glutaminolysis inhibition ameliorates various age- associated disorders. Science 371, 265- -270. https://doi.org/10. 11 26/science.abb5916.

235. Suda, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Hayashi, Y.. lkegami, R. Matsumoto, N., Yoshida, Y., Mikawa, R., Katayama, A, et al. (2021). Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging 1, 1117-1 126. https://doi.org/10. 1038/s43587-021-00151-2.

236. Amor, C., Feucht, J., Leibold, J., Ho, Y.-J., Zhu, C., Alonso-Curbelo, D., Mansilla-Soto, J., Boyer, J.A, Li, X., Giavridis, T., et al. (2020). Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127-132. htps://doi.org/10. 1038/s41586-020-2403-9.

237. Clevers, H., and Watt, F.M. (201 8). Defining adult stem cells by function, not by phenotype. Annu. Rev. Biochem. 87, 1015- 1027. https://doi.org/ 10.1146/annurev-biochem-062917-012341.

238. Tata, P.R., and Rajagopal, J. (2017). Plasticity in the lung: making and breaking cell identity. Development 144, 755 -766. https://doi.org/10. 1242/dev.143784.

239. Lin, B., Coleman, J.H., Peterson, J.N, Zunitch, M.J., Jang, W., Herrick, D.B., and Schwob, J.E. (2017). Injury induces endogenous reprogramming and dedifferentiation of neuronal progenitors to multipotency. Cell Stem Cell 21, 761-774.e5. hts://doi.org/10.1016/j.stem.2017.09.008.

240. Murata, K., Jadhav, U., Madha, S., van Es, J., Dean, J, Cavazza, A., Wu-cherpfennig, K., Michor, F., Clevers, H., and Shivdasani, R.A. (2020). Ascl2-dependent cell differentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell 26, 377- -390.e6. https://doi.org/10. 1016/j.stem.2019.12.011.

241. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663- 676. https://doi.org/10.1016/.cel.2006.07 .024.


242. Deng, W., Jacobson, E.C., Collier, A.J, and Plath, K. (2021). The transcription factor code in iPSC reprogramming. Cur. Opin. Genet. Dev.70, 89-96. hts://doi.org/10. 1016/j.gde.2021.06.003.


243. Li, H, Collado, M., Vllasante, A., Strati, K., Ortega, S., Canamero, M.,Blasco, M.A., and Serrano, M. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136-1139. htts://doi.org/10. 1038/nature08290.


244. Marion, R.M., Strati, K, Li, H., Tejera, A., Schoeftner, S., Ortega, S., Serano, M, and Blasco, M.A. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem
Cell 4, 141-154. https://doi.org/10.1016/j.stem.2008.12.010.


245. Horvath, s. (2013). DNA methylation age of human tissues and cell types. Genome Biol. 14, R115. htp://doi.org/10.1186/gb-2013-14-10-r115.


246. Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C.D., Hemando-Herraez, I., Stubbs, T.M., Milagre, I., and Reik, W. (2022). Multi-omic rejuvenation of human cells by maturation phase transient reprogram-ming. eLife 11, e71624. https://doi.org/10.7554/eLife.7 1624.


247. Chondronasiou, D.. Gill, D.. Mosteiro, L, Urdinguio, R.G., Berenguer-Llergo, A, Aguilera, M., Durand, S., Aprahamian, F., Nirmalathasan, N, Abad, M., et al. (2022). Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell 21, e13578. https:/doi.org/10.1 111/acel.13578.


248. Roux, A.E., Zhang, C., Paw, J., Zavala-Solorio, J., Malahias, E., Vjay, T., Kolumam, G., Kenyon, C., and Kimmel, J.C. (2022). Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity. Cell Syst. 13, 574–587.e11. S2405- 4712(22)00223-X. https://doi.org/10.1016/j.cels.2022.05.002.

249. Poganik, J.R., Zhang, B., Baht, G.S., Kerepesi, C., Yim, S.H., Lu, A.T., Haghani, A., Gong, T., Hedman, A.M., Andolf, E., et al. (2022). Biological age is increased by stress and restored uponrecoveryhttps://doi.org/10. 1101/2022.05.04.490686.

250. Mosteiro, L, Pantoja, C., Alcazar, N., Marion, R.M., Chondronasiou, D., Rovira, M., Fernandez-Marcos, P J., Munoz-Martin, M., Blanco-Aparicio, C., Pastor, J., et al. (2016). Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445. https://doi.org/10.1126/science.aa4445.

251. Ribeiro, R., Macedo, J.C., Costa, M., Ustiyan, V., Shindyapina, A.V., Tyshkovskiy, A., Gomes, R.N., Castro, J.P., Kalin, T.V., Vasques-Novoa, F., et al. (2022). In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. Nat Aging 2, 397 -411. https://doi.org/10.1038/s43587-022-00209-9.

252. Chang-Panesso, M., Kadyrov, F.F., Lalli, M., Wu, H, lkeda, S., Kefaloyianni, E., Abdelmageed, M.M., Hertich, A., Kobayashi, A., and Hum- phreys, B.D. (2019). FOXM1 drives proximal tubule proliferation during repair from acute ischemic kidney injury. J. Clin. Invest. 129, 5501- 5517. htps://doi.org/10.1 172/JC125519.

253. Miller, H.A, Dean, E.S., Pletcher, S.D.. and Leiser, S.F. (2020). Cell non- autonomous regulation of health and longevity. eLife 9, e62659. https:// doi.org/10.7554/eLife.62659.

254. Villeda, S.A, Luo, J, Mosher, K.I., Zou, B., Britschgi, M., Bieri, G., Stan, T.M., Fainberg, N, Ding, Z., Eggel, A., et al. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90-94. https://doi.org/10. 1038/nature10357.

255. Smith, L.K., He, Y., Park, J.-., Bien, G., Snethlage, C.E, Lin, K., Gontier, G., Wabl, R., Plambeck, K.E., Udeochu, J., et al. (2015). β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat. Med.21, 932- -937. https://doi.org/10. 1038/nm.3898.

256. Valletta, S., Thomas, A, Meng, Y., Ren, x, Drissen, R., Sengul, H, Di Genua, C., and Nerlov, C. (2020). Micro-environmental sensing by bone marrow stroma identifies |L-6 and TGFβ1 as regulators of hemato-poietic ageing. Nat. Commun.11, 4075. https://doi.org/10. 1038/s41467- 020-17942-7.

257. Naito, A.T., Sumida, T., Nomura, S., Liu, M.-L, Higo, T., Nakagawa, A., Okada, K., Sakai, T., Hashimoto, A., Hara, Y., et al. (2012). Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell 149, 1298-1313. https://doi.org/10.1016/.cell.2012. 03.047.

258. Fafian-L _abora, J.A., and O'Loghlen, A. (2020). Classical and nonclassical intercellular communication in senescence and ageing. Trends Cell Biol. 30, 628 -639. hts://doi.org/10.1016/j.tcb.2020.05.003.

259. Rando, T.A, and Jones, D.L. (2021). Regeneration, rejuvenation, and replacement: turning back the clock on tissue aging. Cold Spring Harb. Perspect. Biol. 13, a040907. https://doi.org/10.1 101/cshper-spect.a040907.

260. Folgueras, A.R., Freitas-Rodriguez, S., Velasco, G., and L6pez-Otin, C. (201 8). Mouse models to disentangle the hallmarks of human aging. Circ. Res. 123, 905- -924. https://doi.org/10.1161/CIRCRESAHA.118. 312204.

261. Fedintsev, A., and Moskalev, A (2020). Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res. Rev. 62, 101097. https://doi.org/10.1016/.ar. 2020.101097.

262. Selman, M., and Pardo, A (2021). Fibroageing: an ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res. Rev. 70, 101393. https://doi.org/10.101 6/j.arr .2021.101393.

263. Levi, N., Papismadov, N., Solomonov, L., Sagi, L., and Krizhanovsky, V. (2020). The ECM path of senescence in aging: components and modifiers. FEBS J. 287, 2636- -2646. https://doi.org/10.1111/febs.15282.

264. Hu, H.-H., Cao, G.,. Wu, X.-Q., Vazin, N.D., and Zhao, Y.-Y. (2020). Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res. Rev. 60, 101063. https://doi.org/10.101 6/j.arr. 2020.101063.

265. Segel, M., Neumann, B., Hill, M.F.E, Weber, L.P., Viscomi, C., Zhao, C.,Young, A., Agley, C.C, Thompson, AJ, Gonzalez, G.A, et al. (2019). Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130 -1 34. https://doi.org/10.1038/s41586-019- 1484-9.

266. Vafaie, F., Yin, H., O'Neil, C., Nong, Z., Watson, A., Arpino, J.-M., Chu, M.W.A., Wayne Holdsworth, D., Gros, R., and Pickering, J.G. (2014). Collagenase-resistant collagen promotes mouse aging and vascular cell senescence. Aging Cell 13, 121-130. https://doi.org/10.1111/acel.12155.

267. Erikson, G.A., Bodian, D.L, Rueda, M., Molparia, B., Scott, E.R., Scott- Van Zeeland, A.A, Topol, S.E., Wineinger, N.E., Niederhuber, J.E., Topol, E.J., et al. (2016). Whole-genome sequencing of a healthy aging cohort. Cell 165, 1002-101 1. https://doi.org/10.1016/j.cell.2016.03.022.

268. Statzer, C., Jongsma, E., Liu, s.x., Dakhovnik, A., Wandrey, F., Mozhar- ovskyi, P., Zalli, F., and Ewald, C.Y. (2021). Youthful and age-related matreotypes predict drugs promoting longevity. Aging Cell 20, e13441. http:/:/di.og/0.111/acel.13441.

269. Schinzel, R.T., Higuchi-Sanabria, R., Shalem, 0., Moehle, E.A, Webster, B.M., Joe, L., Bar-Ziv, R, Frankino, P.A., Durieux, J., Pender, C., et al. (2019). The hyaluronidase, TMEM2,promotes ER homeostasis and longevity independent of the UPRER. Cell 179, 1306-1318.e18. https:// doi.org/10.1016/j.cell.2019.10.018.

270. King, D.E., and Xiang, J. (2020). Glucosamine/chondroitin and mortality in a US NHANES cohort. J. Am. Board Fam. Med. 33, 842- -847. https:// doi.org/10.3122/jabfm.2020.06.200110.

271. Hirata, T., Arai, Y, Yuasa, S., Abe, Y., Takayama, M., Sasaki, T., Kuni-tomi, A., Inagaki, H., Endo, M., Morinaga, J., et al. (2020). Associations of cardiovascular biomarkers and plasma albumin with exceptional survival to the highest ages. Nat. Commun. 11, 3820. https://doi.org/10. 1038/s41467-020-17636-0.

272. Mogilenko, D.A., Shpynov, 0., Andhey, P.S., Arthur, L, Swain, A., Esaulova, E., Brioschi, S., Shchukina, L., Kerndl, M., Bambouskova, M., et al. (2021). Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99- -115.e12. https://doi.org/10.1016/.immuni.2020.11.005.

273. Carrasco, E., Gomez de Las Heras, M.M., Gabande Rodriguez, E., Desdin-Mico, G., Aranda, J.F., and Mtelbrunn, M. (2022). The role of T cells in age-related diseases. Nat. Rev. Immunol. 22, 97-111. https://doi.org/ 10.1038/s41577-021-00557-4.

274. Jaiswal, S, Natarajan, P., Silver, A.J, Gibson, C.J, Bick, A.G.. Shvartz, E., McConkey, M., Gupta, N., Gabriel, S., Ardissino, D., et al. (2017). Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111-121. https://doi.org/10. 1056/NEJMoa1701719.

275. Svensson, E.C., Madar, A, Campbell, C.D., He, Y., Sultan, M., Healey, M.L., Xu, H., D'Aco, K., Fernandez, A., Wache-Mainier, C., et al. (2022). TET2-driven clonal hematopoiesis and response to canakinumab: ar exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521-528. https://doi.org/10. 1001/jamacardio.2022.0386.

276. Mittelbrunn, M., and Kroemer, G. (2021). Hallmarks ofT cell aging. Nat. Immunol. 22, 687-698. https://doi.org/10. 1038/s41590-021-00927-z.

277. Routy, B., Gopalakrishnan, V., Daillere, R., Zitvogel, L, Wargo, JA, and Kroemer, G. (201 8). The gut microbiota influences anticancer immunosureillance and general health. Nat. Rev. Clin. Oncol. 15, 382- -396. https://doi.org/10.1038/s41571 -018-0006-2.

278. Yousefzadeh, M.J., Flores, R.R., Zhu, Y., Schmiechen, Z.C., Brooks, R.W., Trussoni, C.E., Cui, Y., Angelini, L, Lee, K.-A., McGowan, S.J, et al. (2021). An aged immune system drives senescence and ageing of solid organs. Nature 594, 100 -105. https://doi.org/1 0.1038/s41586-021 -03547-7.

279. D'Souza, s.s., Zhang, Y, Bailey, J.T., Fung, 1.T.H., Kuentzel, M.L, Chittur, S.V., and Yang, Q. (2021). Type I interferon signaling controls the accumulation and transcriptomes of monocytes in the aged lung. Aging Cell 20, e13470. https://doi.org/10.111 1/acel.13470.


280. Gonzalez-Dominguez, A, Montanez, R., Castejon-Vega, B, Nunez-Vasco, J, Lendines-Cordero, D., Wang, C., Mbalaviele, G., Navarro-Pando, J.M., Alcocer-Gomez, E, and Cordero, M.D. (2021). Inhibition
of the NL .RP3 inflammasome improves lifespan in animal murine model of Hutchinson-Gilford progeria. EMBO Mol. Med. 13, e14012. https:// doi.org/10.15252/emmm.202114012.


281. McNeil, JJ, Wolfe, R.,. Woods, R.L, Tonkin, A.M., Donnan, G.A., Nelson, M.R, Reid, C.M., Lockery, J.E., Kirpach, B., Storey, E., et al. (2018). Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N. Engl. J. Med. 379, 1509- -1518. https://doi.org/10.1056/ NEJMoa1805819.


282. Zmora, N., Soffer, E., and Elinav, E. (2019). Transforming medicine with the microbiome. Sci. Transl. Med. 11, eaaw181 5. https://doi.org/10.1 126/scitranslmed.aaw1815.


283. Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M.A.Y., Bolte, L.A., Andreu-Sanchez, S., Chen, L., Collj, V., Hu, S., et al. (2022). Environmental factors shaping the gut microbiome in a Dutch
population. Nature 604, 732- -739. https://doi.org/10. 1038/s41586-022- 04567-7.


284. Lee, K .A., Thomas, A.M., Bolte, L.A., Bjork, J.R., de Ruijter, L.K., Armanini, F., Asnicar, F., Blanco-Miguez, A, Board, R., Calbet-Llopart, N., et al. (2022). Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535- -544. https://doi.org/10.1 038/s41591-022-01695-5.


285. McCulloch, J.A., Davar, D., Rodrigues, R.R., Badger, J.H, Fang, J.R., Cole, A.M., Balaj, A.K, Vetizou, M, Prescott, S.M., Femandes, M.R.,et al. (2022). Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med.28, 545- -556. https://doi.org/10. 1038/s41591-022-01698-2.


286. Ghosh, T.S., Shanahan, F., and O'Toole, P.W. (2022). The gut micro-biome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565 -584. https://doi.org/10. 1038/s41575-022-00605-x.


287. Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R, Turroni,S, Consolandi, C., Quercia, S, Scurti, M., Monti, D., et al. (201 6). Gutmicrobiota and extreme longevity. Curr. Biol. 26, 1480-1485. https://doi. org/10.1016/j.cub.2016.04.016.


288. Wilmanski, T., Diener, C., Rappaport, N., Patwardhan, S., Wiedrick, J, Lapidus, J., Earls, J.C., Zimmer, A., Glusman, G., Robinson, M., et al. (2021). Gut microbiome pattem reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274 -286. https://doi.org/10.1038/ s42255-021-00348-0.

289. Ghosh, T.S., Das, M., Jeffery, l.B, and O'Toole, P.W. (2020). Adjusting for age improves identification of gut microbiome alterations in multiple diseases. eLife 9, e50240. https://doi.org/10.7554/eLife. 50240.

290. Zhang, X., Zhong, H, Li, Y.. Shi, Z., Ren, H., Zhang, Z., Zhou,X., Tang, S, Han, X., Lin, Y., et al. (2021). Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nat Aging 1, 87-100. https://doi.org/10. 1038/s43587-020-00014-2.

291. Sato, Y., Atarashi, K., Plichta, D.R., Arai, Y., Sasajima, S., Keamey, S.M.,Suda, W., Takeshita, K, Sasaki, T., Okamoto, S, et al. (2021). Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458- -464. https://doi.org/10.1 038/s41586-021-03832-5.

292. Fransen, F., van Beek, A.A., Borghuis, T., Aidy, S.E., Hugenholtz, F., vander Gaast-de Jongh, C., Savelkoul, H.F.J., De Jonge, M.,. Boekschoten, M.V., Smidt, H., et al. (2017). Aged gut microbiota contributes to systemical inflammaging after transfer to Germ-free mice. Front. Immunol. 8, 1385. https://doi.org/10.3389/fimmu.201 7.01385.

293. Ragonnaud, E., and Biragyn, A. (2021). Gut microbiota as the key controllers of“healthy" aging of elderly people. Immun. Ageing 18, 2. https://doi. org/10.1186/s 12979-020-00213-W.

294. Madeo, F., Eisenberg, T., Pietrocola, F., and Kroemer, G. (2018). Spermidine in health and disease. Science 359, eaan27 88. https://doi.org/10. 11 26/science.aan2788.

295. Cani, P.D., Depommier, C., Derrien, M., Everard, A, and de Vos, W.M.(2022). Akkemansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19, 625- -637. https://doi.org/10.1 038/s41575-022-00631 -9.

296. Liu, G.Y, and Sabatini, D.M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183- -203. https://doi.org/10.1 038/s41580-019-0199-y.

297. Selvarani, R, Mohammed, S., and Richardson, A. (2021). Effect of rapamycin on aging and age-related diseases-past and future. GeroScience 43, 1135 -11 58. https://doi.org/10. 1007/s11357-020-00274-1.

298. Gladyshev, V.N., Kritchevsky, S.B., Clarke, S.G, Cuervo, A.M., Fiehn, 0., de Magalhaes, J.P., Mau, T., Maes, M., Moritz, R.L, Niedernhofer, L.J,,et al. (2021). Molecular damage in aging. Nat Aging 1, 1096-1 106. https://doi.org/10.1038/s43587-021-00150-3.

299. Xu, M., Bradley, E.W., Weivoda, M.M., Hwang, S.M., Pirtskhalava, T, Decklever, T., Curran, G.L, Ogrodnik, M., Jurk, D., Johnson, K.O., et al. (2017). Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A Biol. Sci. Med. Sci. 72, 780-785. https://doi.org/10.1 093/gerona/glw154.

300. Gladyshev, T.V., and Gladyshev, V.N. (2016). A disease or not a disease? Aging as a pathology. Trends Mol. Med.22, 995- -996. https://doi.org/10. 1016/j.molmed.2016.09.009.

This is excerpted from the Cell 186, January 19, 2023 by Wound World.

 

 

138 Views
伤口世界

电子邮件地址 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。