文献精选
Zhuangzhuang Zhang1,2, Yajie Zhang2* , Yuanshan Liu1,2, Penghui Zheng2 , Tong Gao2 , Bingqing Luo1,2, Xingzhu Liu2 , Fanshu Ma2 , Jine Wang1,2* and Renjun Pei1,2*
ABSTRACT As a type of wound dressings, adhesive hydrogel dressings have been studied widely. However, due to the problems of moisture loss and secondary damage during dressing changes, the clinical application of adhesive hydrogel dressing remains a significant challenge. Herein, we developed a water-retaining and separable adhesive hydrogel wound dressing composed of methacrylated silk fibroin (SFMA), tannic acid (TA), and urethane diacrylate (UDA). The addition of TA with an abundance of catechol groups endowed the hydrogel with improved mechanical properties, good tissue adhesion and hemostasis abilities. Then, a hydrophobic polyurethane diacrylate (PUA) coating encapsulated the hydrogel by UDA polymerization, which could maintain the long-lasting high water content of the hydrogel. Furthermore, due to the adhesion energy being higher than the fracture energy of the hydrogel, it could be separated upon peeling. Finally, the animal experiments indicated that this adhesive hemostatic hydrogel could increase wound healing efficiency by maintaining long-lasting moist environment and being changed without secondary damage. These results showed that the multifunctional hydrogel might be a promising wound dressing for clinical application.
Keywords: adhesive hydrogel, water retention, separability, no secondary damage, wound dressing
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
2 CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
* Corresponding authors (emails: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Pei R); 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Zhang Y); 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Wang J))
Lin Guan1 , Xiaolan Ou2 , Ze Wang1 , Xingchen Li1 , Yubin Feng1 , Xinting Yang1 , Wenrui Qu2* , Bai Yang1 and Quan Lin1*
ABSTRACT Diabetic wounds are hard-healing chronic
wounds, mainly caused by wound infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, comprehensive improvement of diabetic wound healing is of great significance in clinical practice. However, the current research on diabetic wounds mainly focuses on wound infection and angiogenesis, lacking the exploration of neuroregeneration and immunomodulation. In this study, we develop a multifunctional conductive hydrogel (PACPH) based on polydopamine-modified silver nanoparticles (AgNPs@PDA), cellulose nanocrystals (CNC)/polypyrrole (PPy) composites, and polyvinyl alcohol as an efficient wound dressing. The PACPH scaffold features multiple functions, including desirable mechanical properties, tissue adhesion, conductivity, and broad-spectrum antibacterial activity. Inspired by the endogenous electric field, the strategy of combining hydrogel with electrical stimulation (ES) is also proposed to accelerate the healing of diabetic wounds. Notably, the participation of ES can effectively promote nerve repair, realize the polarization of macrophages toward the M2 phenotype, and rapid angiogenesis, comprehensively improving the healing of diabetic wounds. This advanced collaborative strategy opens a new avenue in treating diabetic wound.
Keywords: chronic diabetic wound, conductive hydrogel, electrical stimulation, wound dressing, neuroregeneration
1 State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130000, China
2 Department of Hand Surgery, The Second Hospital of Jilin University, Changchun 130041, China
* Corresponding authors (emails: 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Qu W); 该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。 (Lin Q))
Citation: Diggle J (2023) Updates in the management of cardiovascular diabetes. Diabetes & Primary Care 25: 145–7
Meifang Chen1*, Daniel Weissglass2 , Chengyi Li3 , Di Li3 , Zixuan Wu3 and Li Zhang4
Abstract
Background While the use of self-management apps has considerable promise to efficiently reduce the diabetes burden that disproportionally affects low- and middle-income countries (LMICs), and the multisectoral and multidisciplinary approaches have been encouraged to be used in diabetes management, little is known about the status of the integration of these approaches in the existing diabetes self-management apps. This review examines the diabetes apps in China as an indication of the current status of integrating multisectoral and multidisciplinary approaches in diabetes mHealth care in LMICs.
Methods Eligible diabetes apps were searched on major Chinese app stores up to December 23, 2022. The app comprehensiveness index (ranging 0–80) regarding the app functions and diabetes management domains was created. The multisectoral and multidisciplinary features were summarized using indices derived from current guidance.
Results Sixty-six apps were reviewed, all developed by private companies. The average comprehensiveness score was 16, with many major self-management domains and functions not represented among the reviewed apps. Forty apps (61%) involved multiple sectoral entities, with public/private and private/private collaborations being the most common collaborative combinations. Thirty-seven apps (56%) involved multiple disciplines, among which endocrinology/metabolism, nutrition, and cardiovascular medicine were the top three most common disciplines. Compared to non-multidisciplinary apps, multidisciplinary apps tended to provide more comprehensive services in apps (6.14 vs. 5.18, p=0.0345). Different sectors and disciplines tended to work independently, without robust interactions, in providing diabetes management services in the reviewed apps.
Conclusion Multisectoral and multidisciplinary features has presented in the current diabetes self-management apps in China; however, it is still in its infancy and significant limitations existed. More engagement of civil society organizations and community groups and innovative collaborations between sectors and disciplines are needed to provide comprehensive, continuous, and patient-centered mHealth care for patients with diabetes in LMICs like China. Clear guidance for integrating and evaluating the multisectoral and multidisciplinary efforts in self-management apps
is necessary to ensure the effective use of mHealth solutions for diabetes management in LMICs.
Keywords Diabetes, Self-management, Multisector, Multidisciplinarity, LMICs, China, mHealth
*Correspondence:
Meifang Chen
该Email地址已收到反垃圾邮件插件保护。要显示它您需要在浏览器中启用JavaScript。
Full list of author information is available at the end of the article
© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.