文献精选

Abstract

         Postoperative incisional management subsequent to total joint replacement arthroplasty is of importance to the orthopedic surgical team. The application of closed incision negative pressure therapy (ciNPT) to surgical incisions following replacement arthroplasty has demonstrated positive outcomes in orthopedics.This paper describes a technique involving the postoperative application of ciNPT over closed incisions originating from joint arthroplasty to facilitate a reduction in the incidence of surgical site complications (SSCs). To address any potential challenges that may be associated with ciNPT application and removal, the ciNPT dressing was applied to the knee incision with approximately 15 degrees of flflexion utilizing the total knee bump to allow the knee to rest with flflexion at that angle. For posterior hip replacements or revisions, the readily adjustable ciNPT dressing was enlisted for use to cover curvilinear incisions. The adhesive drape over the foam ciNPT dressing would be blocked to ensure that drain placement, if used, would not be incorporated with the hydrocolloid portion of the dressing. In order to properly apply the dressing, it was imperative that the hydrocolloid portion was not subject to any buckling. The dressing was walked over the foam ciNPT dressing to ensure that there was an absence of tension on the dressing. The manufacturer’s instructions support dressing use for a maximum of seven days with continuous subatmospheric pressure (-125 mmHg) applied to the closed incision. Applying the adhesive ciNPT drape over the ciNPT foam dressing with a minimal amount of tension is integral to attaining positive outcomes using ciNPT. Employing ciNPT may reduce the risk of delayed incisional healing and SSCs, which may alleviate providers from extra postoperative global visits.

Categories: Orthopedics, Therapeutics

Keywords: orthopedics, arthroplasty, hip replacement, knee joint, closed incision negative pressure therapy, cinpt, incisional negative pressure wound therapy.

ABSTRACT

Diabetes mellitus (DM) can be implicated in the perturbations of vascular integrity and the dysfunction of angiogenesis. Chitosan has the advantage of promoting the vascular endothelial cell proliferation. However, the molecular mechanism of action in the promotion of wound healing by chitosan derivatives is still debated. In the current study, DM with chronic wound (CW) model rats were prepared and treated with chitosan. Vascular endothelial cells isolated from granulation tissues were conducted by RNA sequencing. Two thousand three hundred and sixteen genes were up-regulated, while 1,864 genes were down-regulated after chitosan treatment compared to CW group. Here, we observed that caveolin 1 (CAV1) was highly expressed induced by chitosan. Furthermore, we observed that CAV1 knockdown could compromise the activation of Wnt pathway by reduction of β-catenin in rat aortic endothelial cells (RAOECs) and brain endothelium four cells (RBE4s). Moreover, we determined a direct interaction between CAV1 and β-catenin by IP assay. The C-terminus of CAV1 and β-catenin (24 to 586 amino acids contributed to the interaction of these two proteins. Finally, the protein docking analysis indicated that the fragments of β-catenin (253–261 ‘FYAITTLHN’ and 292–303 ‘KFLAITTDCLQI’) might have affected the structure by CAV1 and facilitated the resistance to degradation. Taken together, our study demonstrates that chitosan can up-regulate CAV1 expression, and CAV1 can interact with β- catenin for promotion of canonical Wnt signaling pathway activity. Our results deepens the molecular mechanism of the Wnt pathway in vascular endothelial cells and is beneficial to developing new targets to assist in enhancing the pharmacological effect of chitosan on wound healing and angiogenesis against DM.

KEYWORDS

CAV1; β-catenin; chitosan;Wnt pathway; angiogenesis; diabetes mellitus.

ABSTRACT:Persistent corneal epithelial defects (PED) can lead to irreversible blindness, seriously affecting the social function and life quality of these patients. When it comes to refractory PED, such as limbal stem cell deficiency (LSCD), that does not respond to standard managements, stem cell therapy is an ideal method. Oral mucosal epithelium (OME) abundant with stem cells within the base, is a promising autologous biomaterial, with much resemblance to corneal epithelial structures. In this experiment, uncultured autologous rat OME was directly applied to alkali burned corneas. Clinical evaluations and histological analyses showed that the transplantation accelerated the healing process, presenting faster re-epithelization and better formation of corneal epithelial barrier. To further investigate the therapeutic mechanism, oral epithelium was transplanted to de-epithelialized cornea in vitro for organ culture. It could be observed that the oral epithelial cells could migrate to the corneal surface and form smooth and stratified epithelium. Immunofluorescence staining results showed that the reformed epithelium derived from OME, maintained stemness and transformed to corneal epithelial phenotype to some extent. Corneal stroma may provide the suitable microenvironment to promote the trans-differentiation of oral stem cells. Thus, both in vivo and in vitro experiments suggested that oral epithelium could play a positive role in treating refractory PED.

Keywords: Persistent corneal epithelial defects Oral mucosal epithelial transplantation Organ culture Stem cell microenvironment.

Abstract

Background: For patients with diabetic foot ulcers, offloading is one crucial aspect of treatment and aims to redistribute pressure away from the ulcer site. In addition to offloading strategies, patients are often advised to reduce their activity levels. Consequently, patients may avoid exercise altogether. However, it has been suggested that exercise induces an increase in vasodilation and tissue blood flow, which may potentially facilitate ulcer healing. The aim of this systematic review was to determine whether exercise improves healing of diabetic foot ulcers.

Review: We conducted a systematic search of MEDLINE, CINAHL and EMBASE between July 6, 2009 and July 6, 2019 using the key terms and subject headings diabetes, diabetic foot, physical activity, exercise, resistance training and wound healing. Randomised controlled trials were included in this review.

Three randomised controlled trials (139 participants) were included in this systematic review. All studies incorporated a form of non-weight bearing exercise as the intervention over a 12-week period. One study conducted the intervention in a supervised setting, while two studies conducted the intervention in an unsupervised setting. Two studies found greater improvement in percentage wound size reduction in the intervention group compared with the control group, with one of these studies achieving statistically significant findings (p < 0.05). The results of the third study demonstrated statistically significant findings for total wound size reduction (p < 0.05), however results were analysed within each treatment group and not between groups.

Conclusion: This systematic review found there is insufficient evidence to conclusively support non-weight bearing exercise as an intervention to improve healing of diabetic foot ulcers. Regardless, the results demonstrate some degree of wound size reduction and there were no negative consequences of the intervention for the participants. Given the potential benefits of exercise on patient health and wellbeing, non-weight bearing exercise should be encouraged as part of the management plan for treatment of diabetic foot ulcers. Further research is required to better understand the relationship between exercise and healing of diabetic foot ulcers.

Keywords: Diabetic foot ulcer, Exercise, Physical therapy, Wound healing.